Enzymes
UniProtKB help_outline | 35,917 proteins |
Reaction participants Show >> << Hide
- Name help_outline 2-C-methyl-D-erythritol 4-phosphate Identifier CHEBI:58262 Charge -2 Formula C5H11O7P InChIKeyhelp_outline XMWHRVNVKDKBRG-UHNVWZDZSA-L SMILEShelp_outline C[C@](O)(CO)[C@H](O)COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,294 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 1-deoxy-D-xylulose 5-phosphate Identifier CHEBI:57792 (Beilstein: 11127452) help_outline Charge -2 Formula C5H9O7P InChIKeyhelp_outline AJPADPZSRRUGHI-RFZPGFLSSA-L SMILEShelp_outline CC(=O)[C@@H](O)[C@H](O)COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 8 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,288 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:13717 | RHEA:13718 | RHEA:13719 | RHEA:13720 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
A secondary kinetic isotope effect study of the 1-deoxy-D-xylulose-5-phosphate reductoisomerase-catalyzed reaction: evidence for a retroaldol-aldol rearrangement.
Munos J.W., Pu X., Mansoorabadi S.O., Kim H.J., Liu H.W.
1-Deoxy-d-xylulose 5-phosphate (DXP) reductoisomerase (DXR, also known as methyl-d-erythritol 4-phosphate (MEP) synthase) is a NADPH-dependent enzyme, which catalyzes the conversion of DXP to MEP in the nonmevalonate pathway of isoprene biosynthesis. Two mechanisms have been proposed for the DXR-c ... >> More
1-Deoxy-d-xylulose 5-phosphate (DXP) reductoisomerase (DXR, also known as methyl-d-erythritol 4-phosphate (MEP) synthase) is a NADPH-dependent enzyme, which catalyzes the conversion of DXP to MEP in the nonmevalonate pathway of isoprene biosynthesis. Two mechanisms have been proposed for the DXR-catalyzed reaction. In the alpha-ketol rearrangement mechanism, the reaction begins with deprotonation of the C-3 hydroxyl group followed by a 1,2-migration to give methylerythrose phosphate, which is then reduced to MEP by NADPH. In the retroaldol/aldol rearrangement mechanism, DXR first cleaves the C3-C4 bond of DXP in a retroaldol manner to generate a three-carbon and a two-carbon phosphate bimolecular intermediate. These two species are then reunited by an aldol reaction to form a new C-C bond, yielding an aldehyde intermediate. Subsequent reduction by NADPH affords MEP. To differentiate these mechanisms, we have prepared [3-(2)H]- and [4-(2)H]-DXP and carried out a competitive secondary kinetic isotope effect (KIE) study of the DXR reaction. The normal 2 degrees KIEs observed for [3-(2)H]- and [4-(2)H]-DXP provide compelling evidence supporting a retroaldol/aldol mechanism for the rearrangement catalyzed by DXR, with the rate-limiting step being cleavage of the C3-C4 bond of DXP. << Less
-
1-Deoxy-D-xylulose 5-phosphate reductoisomerase (IspC) from Mycobacterium tuberculosis: towards understanding mycobacterial resistance to fosmidomycin.
Dhiman R.K., Schaeffer M.L., Bailey A.M., Testa C.A., Scherman H., Crick D.C.
1-Deoxy-d-xylulose 5-phosphate reductoisomerase (IspC) catalyzes the first committed step in the mevalonate-independent isopentenyl diphosphate biosynthetic pathway and is a potential drug target in some pathogenic bacteria. The antibiotic fosmidomycin has been shown to inhibit IspC in a number of ... >> More
1-Deoxy-d-xylulose 5-phosphate reductoisomerase (IspC) catalyzes the first committed step in the mevalonate-independent isopentenyl diphosphate biosynthetic pathway and is a potential drug target in some pathogenic bacteria. The antibiotic fosmidomycin has been shown to inhibit IspC in a number of organisms and is active against most gram-negative bacteria but not gram positives, including Mycobacterium tuberculosis, even though the mevalonate-independent pathway is the sole isopentenyl diphosphate biosynthetic pathway in this organism. Therefore, the enzymatic properties of recombinant IspC from M. tuberculosis were characterized. Rv2870c from M. tuberculosis converts 1-deoxy-d-xylulose 5-phosphate to 2-C-methyl-d-erythritol 4-phosphate in the presence of NADPH. The enzymatic activity is dependent on the presence of Mg(2+) ions and exhibits optimal activity between pH 7.5 and 7.9; the K(m) for 1-deoxyxylulose 5-phosphate was calculated to be 47.1 microM, and the K(m) for NADPH was 29.7 microM. The specificity constant of Rv2780c in the forward direction is 1.5 x 10(6) M(-1) min(-1), and the reaction is inhibited by fosmidomycin, with a 50% inhibitory concentration of 310 nM. In addition, Rv2870c complements an inactivated chromosomal copy of IspC in Salmonella enterica, and the complemented strain is sensitive to fosmidomycin. Thus, M. tuberculosis resistance to fosmidomycin is not due to intrinsic properties of Rv2870c, and the enzyme appears to be a valid drug target in this pathogen. << Less
-
A 1-deoxy-D-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-D-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis.
Takahashi S., Kuzuyama T., Watanabe H., Seto H.
Several eubacteria including Esherichia coli use an alternative nonmevalonate pathway for the biosynthesis of isopentenyl diphosphate instead of the ubiquitous mevalonate pathway. In the alternative pathway, 2-C-methyl-D-erythritol or its 4-phosphate, which is proposed to be formed from 1-deoxy-D- ... >> More
Several eubacteria including Esherichia coli use an alternative nonmevalonate pathway for the biosynthesis of isopentenyl diphosphate instead of the ubiquitous mevalonate pathway. In the alternative pathway, 2-C-methyl-D-erythritol or its 4-phosphate, which is proposed to be formed from 1-deoxy-D-xylulose 5-phosphate via intramolecular rearrangement followed by reduction process, is one of the biosynthetic precursors of isopentenyl diphosphate. To clone the gene(s) responsible for synthesis of 2-C-methyl-D-erythritol 4-phosphate, we prepared and selected E. coli mutants with an obligatory requirement for 2-C-methylerythritol for growth and survival. All the DNA fragments that complemented the defect in synthesizing 2-C-methyl-D-erythritol 4-phosphate of these mutants contained the yaeM gene, which is located at 4.2 min on the chromosomal map of E. coli. The gene product showed significant homologies to hypothetical proteins with unknown functions present in Haemophilus influenzae, Synechocystis sp. PCC6803, Mycobacterium tuberculosis, Helicobacter pyroli, and Bacillus subtilis. The purified recombinant yaeM gene product was overexpressed in E. coli and found to catalyze the formation of 2-C-methyl-D-erythritol 4-phosphate from 1-deoxy-D-xylulose 5-phosphate in the presence of NADPH. Replacement of NADPH with NADH decreased the reaction rate to about 1% of the original rate. The enzyme required Mn2+, Co2+, or Mg2+ as well. These data clearly show that the yaeM gene encodes an enzyme, designated 1-deoxy-D-xylulose 5-phosphate reductoisomerase, that synthesizes 2-C-methyl-D-erythritol 4-phosphate from 1-deoxy-D-xylulose 5-phosphate, in a single step by intramolecular rearrangement and reduction and that this gene is responsible for terpenoid biosynthesis in E. coli. << Less
Proc. Natl. Acad. Sci. U.S.A. 95:9879-9884(1998) [PubMed] [EuropePMC]