Enzymes
UniProtKB help_outline | 2 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline lathosterol Identifier CHEBI:17168 (CAS: 80-99-9) help_outline Charge 0 Formula C27H46O InChIKeyhelp_outline IZVFFXVYBHFIHY-SKCNUYALSA-N SMILEShelp_outline [H][C@@]12CC=C3[C@]4([H])CC[C@]([H])([C@H](C)CCCC(C)C)[C@@]4(C)CC[C@]3([H])[C@@]1(C)CC[C@H](O)C2 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,316 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 5α-cholesta-7,24-dien-3β-ol Identifier CHEBI:16290 (CAS: 651-54-7) help_outline Charge 0 Formula C27H44O InChIKeyhelp_outline PKEPPDGGTSZLBL-SKCNUYALSA-N SMILEShelp_outline [H][C@@]12CC=C3[C@]4([H])CC[C@]([H])([C@H](C)CCC=C(C)C)[C@@]4(C)CC[C@]3([H])[C@@]1(C)CC[C@H](O)C2 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,310 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,717 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:13685 | RHEA:13686 | RHEA:13687 | RHEA:13688 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
A comprehensive machine-readable view of the mammalian cholesterol biosynthesis pathway.
Mazein A., Watterson S., Hsieh W.Y., Griffiths W.J., Ghazal P.
Cholesterol biosynthesis serves as a central metabolic hub for numerous biological processes in health and disease. A detailed, integrative single-view description of how the cholesterol pathway is structured and how it interacts with other pathway systems is lacking in the existing literature. He ... >> More
Cholesterol biosynthesis serves as a central metabolic hub for numerous biological processes in health and disease. A detailed, integrative single-view description of how the cholesterol pathway is structured and how it interacts with other pathway systems is lacking in the existing literature. Here we provide a systematic review of the existing literature and present a detailed pathway diagram that describes the cholesterol biosynthesis pathway (the mevalonate, the Kandutch-Russell and the Bloch pathway) and shunt pathway that leads to 24(S),25-epoxycholesterol synthesis. The diagram has been produced using the Systems Biology Graphical Notation (SBGN) and is available in the SBGN-ML format, a human readable and machine semantically parsable open community file format. << Less
Biochem. Pharmacol. 86:56-66(2013) [PubMed] [EuropePMC]
This publication is cited by 30 other entries.
-
The Arabidopsis DIMINUTO/DWARF1 gene encodes a protein involved in steroid synthesis.
Klahre U., Noguchi T., Fujioka S., Takatsuto S., Yokota T., Nomura T., Yoshida S., Chua N.H.
We have identified the function of the Arabidopsis DIMINUTO/DWARF1 (DIM/DWF1) gene by analyzing the dim mutant, a severe dwarf with greatly reduced fertility. Both the mutant phenotype and gene expression could be rescued by the addition of exogenous brassinolide. Analysis of endogenous sterols de ... >> More
We have identified the function of the Arabidopsis DIMINUTO/DWARF1 (DIM/DWF1) gene by analyzing the dim mutant, a severe dwarf with greatly reduced fertility. Both the mutant phenotype and gene expression could be rescued by the addition of exogenous brassinolide. Analysis of endogenous sterols demonstrated that dim accumulates 24-methylenecholesterol but is deficient in campesterol, an early precursor of brassinolide. In addition, we show that dim is deficient in brassinosteroids as well. Feeding experiments using deuterium-labeled 24-methylenecholesterol and 24-methyldesmosterol confirmed that DIM/DWF1 is involved in both the isomerization and reduction of the Delta24(28) bond. This conversion is not required in cholesterol biosynthesis in animals but is a key step in the biosynthesis of plant sterols. Transient expression of a green fluorescent protein-DIM/DWF1 fusion protein and biochemical experiments showed that DIM/DWF1 is an integral membrane protein that most probably is associated with the endoplasmic reticulum. << Less
-
Cholesterol biosynthesis from lanosterol: development of a novel assay method and characterization of rat liver microsomal lanosterol delta 24-reductase.
Bae S.H., Paik Y.K.
The membrane-bound sterol delta 24-reductase (24-reductase) catalyses anaerobic reduction of the 24(25)-enes of lanosterol and other obligatory intermediates of cholesterol biosynthesis from lanosterol. A novel assay method and properties of the 24-reductase are described. More than a 120-fold ind ... >> More
The membrane-bound sterol delta 24-reductase (24-reductase) catalyses anaerobic reduction of the 24(25)-enes of lanosterol and other obligatory intermediates of cholesterol biosynthesis from lanosterol. A novel assay method and properties of the 24-reductase are described. More than a 120-fold induction of the 24-reductase activity was achieved by feeding rats a diet containing 5% cholestyramine plus 0.1% lovastatin in chow and by modulating diurnal variation. With this enzyme induction condition, lanosterol was converted efficiently into dihydrolanosterol in both intact hepatic microsomes and freshly isolated hepatocytes only when either miconazole or CO was added to inhibit 14 alpha-demethylation of lanosterol. AR45 cells, which are deficient in 14 alpha-methyl demethylase (14 alpha-DM), exhibit lanosterol 24-reductase activity without addition of either CO or miconazole. Conversely, inhibition of the 24-reductase was not required for the expression of 14 alpha-DM activity. Studies on the substrate specificities for the 24-reductase using different 24(25)-enes showed that the most reactive substrate was 5 alpha-cholesta-7,24-dien-3 beta-ol, which exhibited a maximal 18-fold higher kcat than that of lanosterol without the aid of the 14 alpha-DM inhibitor. In addition, both the kinetic behaviour of lanosterol substrate in relation to the 24-reductase and a non-competitive inhibition mode of U18666A (Ki 0. 157 microM) as well as Triparanol (Ki 0.523 microM), two well-known 24-reductase inhibitors, were determined. On the basis of our new findings on the preferred substrate and on the negative effect of 14 alpha-DM on the 24-reductase, we suggest that C-24 reduction of sterols takes place straight after sterol delta 8-->7 isomerization of zymosterol, which occurs several steps after C-32 demethylation of lanosterol in the 19-step pathway of cholesterol biosynthesis from lanosterol. << Less
Biochem J 326:609-616(1997) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis.
Choe S., Dilkes B.P., Gregory B.D., Ross A.S., Yuan H., Noguchi T., Fujioka S., Takatsuto S., Tanaka A., Yoshida S., Tax F.E., Feldmann K.A.
Since the isolation and characterization of dwarf1-1 (dwf1-1) from a T-DNA insertion mutant population, phenotypically similar mutants, including deetiolated2 (det2), constitutive photomorphogenesis and dwarfism (cpd), brassinosteroid insensitive1 (bri1), and dwf4, have been reported to be defecti ... >> More
Since the isolation and characterization of dwarf1-1 (dwf1-1) from a T-DNA insertion mutant population, phenotypically similar mutants, including deetiolated2 (det2), constitutive photomorphogenesis and dwarfism (cpd), brassinosteroid insensitive1 (bri1), and dwf4, have been reported to be defective in either the biosynthesis or the perception of brassinosteroids. We present further characterization of dwf1-1 and additional dwf1 alleles. Feeding tests with brassinosteroid-biosynthetic intermediates revealed that dwf1 can be rescued by 22alpha-hydroxycampesterol and downstream intermediates in the brassinosteroid pathway. Analysis of the endogenous levels of brassinosteroid intermediates showed that 24-methylenecholesterol in dwf1 accumulates to 12 times the level of the wild type, whereas the level of campesterol is greatly diminished, indicating that the defective step is in C-24 reduction. Furthermore, the deduced amino acid sequence of DWF1 shows significant similarity to a flavin adenine dinucleotide-binding domain conserved in various oxidoreductases, suggesting an enzymatic role for DWF1. In support of this, 7 of 10 dwf1 mutations directly affected the flavin adenine dinucleotide-binding domain. Our molecular characterization of dwf1 alleles, together with our biochemical data, suggest that the biosynthetic defect in dwf1 results in reduced synthesis of bioactive brassinosteroids, causing dwarfism. << Less