Reaction participants Show >> << Hide
- Name help_outline (2R)-3-phosphoglycerate Identifier CHEBI:58272 Charge -3 Formula C3H4O7P InChIKeyhelp_outline OSJPPGNTCRNQQC-UWTATZPHSA-K SMILEShelp_outline O[C@H](COP([O-])([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 24 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline GDP-α-D-mannose Identifier CHEBI:57527 (Beilstein: 6630718) help_outline Charge -2 Formula C16H23N5O16P2 InChIKeyhelp_outline MVMSCBBUIHUTGJ-GDJBGNAASA-L SMILEShelp_outline Nc1nc2n(cnc2c(=O)[nH]1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)O[C@H]2O[C@H](CO)[C@@H](O)[C@H](O)[C@@H]2O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 54 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2-O-(α-D-mannosyl)-3-phosphoglycerate Identifier CHEBI:57744 Charge -3 Formula C9H14O12P InChIKeyhelp_outline RJDBNSZFZDWPFL-WEDYNZIRSA-K SMILEShelp_outline OC[C@H]1O[C@H](OC(COP([O-])([O-])=O)C([O-])=O)[C@@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline GDP Identifier CHEBI:58189 Charge -3 Formula C10H12N5O11P2 InChIKeyhelp_outline QGWNDRXFNXRZMB-UUOKFMHZSA-K SMILEShelp_outline Nc1nc2n(cnc2c(=O)[nH]1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 184 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:13537 | RHEA:13538 | RHEA:13539 | RHEA:13540 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Pathway for the synthesis of mannosylglycerate in the hyperthermophilic archaeon Pyrococcus horikoshii. Biochemical and genetic characterization of key enzymes.
Empadinhas N., Marugg J.D., Borges N., Santos H., da Costa M.S.
The biosynthetic pathway for the synthesis of the compatible solute alpha-mannosylglycerate in the hyperthermophilic archaeon Pyrococcus horikoshii is proposed based on the activities of purified recombinant mannosyl-3-phosphoglycerate (MPG) synthase and mannosyl-3-phosphoglycerate phosphatase. Th ... >> More
The biosynthetic pathway for the synthesis of the compatible solute alpha-mannosylglycerate in the hyperthermophilic archaeon Pyrococcus horikoshii is proposed based on the activities of purified recombinant mannosyl-3-phosphoglycerate (MPG) synthase and mannosyl-3-phosphoglycerate phosphatase. The former activity was purified from cell extracts, and the N-terminal sequence was used to identify the encoding gene in the completely sequenced P. horikoshii genome. This gene, designated PH0927, and a gene immediately downstream (PH0926) were cloned and overexpressed in Escherichia coli. The recombinant product of gene PH0927 catalyzed the synthesis of alpha-mannosyl-3-phosphoglycerate (MPG) from GDP-mannose and d-3-phosphoglycerate retaining the configuration about the anomeric carbon, whereas the recombinant gene product of PH0926 catalyzed the dephosphorylation of mannosyl-3-phosphoglycerate to yield the compatible solute alpha-mannosylglycerate. The MPG synthase and the MPG phosphatase were specific for these substrates. Two genes immediately downstream from mpgs and mpgp were identified as a putative bifunctional phosphomannose isomerase/mannose-1-phosphate-guanylyltransferase (PH0925) and as a putative phosphomannose mutase (PH0923). Genes PH0927, PH0926, PH0925, and PH0923 were contained in an operon-like structure, leading to the hypothesis that these genes were under the control of an unknown osmosensing mechanism that would lead to alpha-mannosylglycerate synthesis. Recombinant MPG synthase had a molecular mass of 45,208 Da, a temperature for optimal activity between 90 and 100 degrees C, and a pH optimum between 6.4 and 7.4; the recombinant MPG phosphatase had a molecular mass of 27,958 Da and optimum activity between 95 and 100 degrees C and between pH 5.2 and 6.4. This is the first report of the characterization of MPG synthase and MPG phosphatase and the elucidation of a pathway for the synthesis of mannosylglycerate in an archaeon. << Less
J. Biol. Chem. 276:43580-43588(2001) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
A gene from the mesophilic bacterium Dehalococcoides ethenogenes encodes a novel mannosylglycerate synthase.
Empadinhas N., Albuquerque L., Costa J., Zinder S.H., Santos M.A., Santos H., da Costa M.S.
Mannosylglycerate (MG) is a common compatible solute found in thermophilic and hyperthermophilic prokaryotes. In this study we characterized a mesophilic and bifunctional mannosylglycerate synthase (MGSD) encoded in the genome of the bacterium Dehalococcoides ethenogenes. mgsD encodes two domains ... >> More
Mannosylglycerate (MG) is a common compatible solute found in thermophilic and hyperthermophilic prokaryotes. In this study we characterized a mesophilic and bifunctional mannosylglycerate synthase (MGSD) encoded in the genome of the bacterium Dehalococcoides ethenogenes. mgsD encodes two domains with extensive homology to mannosyl-3-phosphoglycerate synthase (MPGS, EC 2.4.1.217) and to mannosyl-3-phosphoglycerate phosphatase (MPGP, EC 3.1.3.70), which catalyze the consecutive synthesis and dephosphorylation of mannosyl-3-phosphoglycerate to yield MG in Pyrococcus horikoshii, Thermus thermophilus, and Rhodothermus marinus. The bifunctional MGSD was overproduced in Escherichia coli, and we confirmed the combined MPGS and MPGP activities of the recombinant enzyme. The optimum activity of the enzyme was at 50 degrees C. To examine the properties of each catalytic domain of MGSD, we expressed them separately in E. coli. The monofunctional MPGS was unstable, while the MPGP was stable and was characterized. Dehalococcoides ethenogenes cannot be grown sufficiently to identify intracellular compatible solutes, and E. coli harboring MGSD did not accumulate MG. However, Saccharomyces cerevisiae expressing mgsD accumulated MG, confirming that this gene product can synthesize this compatible solute and arguing for a role in osmotic adjustment in the natural host. We did not detect MGSD activity in cell extracts of S. cerevisiae. Here we describe the first gene and enzyme for the synthesis of MG from a mesophilic microorganism and discuss the possible evolution of this bifunctional MGSD by lateral gene transfer from thermophilic and hyperthermophilic organisms. << Less