Reaction participants Show >> << Hide
- Name help_outline (S)-dihydroorotate Identifier CHEBI:30864 Charge -1 Formula C5H5N2O4 InChIKeyhelp_outline UFIVEPVSAGBUSI-REOHCLBHSA-M SMILEShelp_outline [O-]C(=O)[C@@H]1CC(=O)NC(=O)N1 2D coordinates Mol file for the small molecule Search links Involved in 10 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,190 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline orotate Identifier CHEBI:30839 (Beilstein: 3651747; CAS: 73-97-2) help_outline Charge -1 Formula C5H3N2O4 InChIKeyhelp_outline PXQPEWDEAKTCGB-UHFFFAOYSA-M SMILEShelp_outline [O-]C(=O)c1cc(=O)[nH]c(=O)[nH]1 2D coordinates Mol file for the small molecule Search links Involved in 14 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,120 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:13513 | RHEA:13514 | RHEA:13515 | RHEA:13516 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Dihydroorotate dehydrogenase B of Enterococcus faecalis. Characterization and insights into chemical mechanism.
Marcinkeviciene J., Tinney L.M., Wang K.H., Rogers M.J., Copeland R.A.
Enterococcus faecalis dihydroorotate dehydrogenase B is a heterodimer of 28 and 33 kDa encoded by the pyrK and pyrDb genes. Both subunits copurify during all chromatographic steps, and, as determined by HPLC, one FMN and one FAD are bound per heterodimer. The enzyme catalyzes efficient oxidation o ... >> More
Enterococcus faecalis dihydroorotate dehydrogenase B is a heterodimer of 28 and 33 kDa encoded by the pyrK and pyrDb genes. Both subunits copurify during all chromatographic steps, and, as determined by HPLC, one FMN and one FAD are bound per heterodimer. The enzyme catalyzes efficient oxidation of 4-S-NADH by orotate. Isotope effect and pH data suggest that reduction of flavin by NADH at the PyrK site is only partially rate limiting with no kinetically significant proton transfer occurring in the reductive half-reaction; therefore, a group exhibiting a pK of 5.7 +/-0.2 represents a residue involved in binding of NADH rather than in catalysis. The reducing equivalents are shuttled between the NADH-oxidizing flavin in PyrK and the orotate-reacting flavin in PyrDb, by iron-sulfur centers through flavin semiquinones as intermediates. A solvent kinetic isotope effect of 2.5 +/-0.2 on V is indicative of rate-limiting protonation in the oxidative half-reaction and most likely reflects the interaction between the isoalloxazine N1 of the orotate-reducing flavin and Lys 168 (by analogy with L. lactis DHODase A). The oxidative half-reaction is facilitated by deprotonation of the group(s) with pK(s) of 5.8-6.3 and reflects either deprotonation of the reduced flavin or binding of orotate; this step is followed by hydride transfer to C6 and general acid-assisted protonation (pK of 9.1 +/- 0.2) at C5 of the product. << Less
-
Stereospecificity of the dihydroorotate-dehydrogenase reaction.
Blattmann P., Retey J.
-
Structure of dihydroorotate dehydrogenase B: electron transfer between two flavin groups bridged by an iron-sulphur cluster.
Rowland P., Noerager S., Jensen K.F., Larsen S.
<h4>Background</h4>The fourth step and only redox reaction in pyrimidine de novo biosynthesis is catalyzed by the flavoprotein dihydroorotate dehydrogenase (DHOD). Based on their sequences, DHODs are grouped into two major families. Lactococcus lactis is one of the few organisms with two DHODs, A ... >> More
<h4>Background</h4>The fourth step and only redox reaction in pyrimidine de novo biosynthesis is catalyzed by the flavoprotein dihydroorotate dehydrogenase (DHOD). Based on their sequences, DHODs are grouped into two major families. Lactococcus lactis is one of the few organisms with two DHODs, A and B, belonging to each of the two subgroups of family 1. The B enzyme (DHODB) is a prototype for DHODs in Gram-positive bacteria that use NAD+ as the second substrate. DHODB is a heterotetramer composed of two different proteins (PyrDB and PyrK) and three different cofactors: FMN, FAD, and a [2Fe-2S] cluster.<h4>Results</h4>Crystal structures have been determined for DHODB and its product complex. The DHODB heterotetramer is composed of two closely interacting PyrDB-PyrK dimers with the [2Fe-2S] cluster in their interface centered between the FMN and FAD groups. Conformational changes are observed between the complexed and uncomplexed state of the enzyme for the loop carrying the catalytic cysteine residue and one of the lysines interacting with FMN, which is important for substrate binding.<h4>Conclusions</h4>A dimer of two PyrDB subunits resembling the family 1A enzymes forms the central core of DHODB. PyrK belongs to the NADPH ferredoxin reductase superfamily. The binding site for NAD+ has been deduced from the similarity to these proteins. The orotate binding in DHODB is similar to that in the family 1A enzymes. The close proximity of the three redox centers makes it possible to propose a possible electron transfer pathway involving residues conserved among the family 1B DHODs. << Less
-
Dihydroorotate dehydrogenase from Clostridium oroticum is a class 1B enzyme and utilizes a concerted mechanism of catalysis.
Argyrou A., Washabaugh M.W., Pickart C.M.
Dihydroorotate dehydrogenase from Clostridium oroticum was purified to apparent homogeneity and found to be a heterotetramer consisting of two alpha (32 kDa) and two beta (28 kDa) polypeptides. This subunit composition, coupled with known cofactor requirements and the ability to transfer electrons ... >> More
Dihydroorotate dehydrogenase from Clostridium oroticum was purified to apparent homogeneity and found to be a heterotetramer consisting of two alpha (32 kDa) and two beta (28 kDa) polypeptides. This subunit composition, coupled with known cofactor requirements and the ability to transfer electrons from L-dihydroorotate to NAD(+), defines the C. oroticum enzyme as a family 1B dihydroorotate dehydrogenase. The results of steady-state kinetic analyses and isotope exchange studies suggest that this enzyme utilizes a ping-pong steady-state kinetic mechanism. The pH-k(cat) profile is bell-shaped with a pK(a) of 6.4 +/- 0.1 for the ascending limb and 8. 9 +/-0.1 for the descending limb; the pH-k(cat)/K(m) profile is similar but somewhat more complex. The pK(a) values of 6.4 and 8.9 are likely to represent the ionizations of cysteine and lysine residues in the active site which act as a general base and an electrostatic catalyst, respectively. At saturating levels of NAD(+), the isotope effects on (D)V and (D)(V/K(DHO)), obtained upon deuteration at both the C(5)-proR and C(5)-proS positions of L-dihydroorotate, increase from a value of unity at pH >9.0 to sizable values at low pH due to a high commitment to catalysis at high pH. At pH = 6.5, the magnitude of the double isotope effects (D)V and (D)(V/K(DHO)), obtained upon additional deuteration at C(6), is consistent with a mechanism in which C(5)-proS proton transfer and C(6)-hydride transfer occur in a single, partially rate-limiting step. << Less
-
Thermodynamic basis of electron transfer in dihydroorotate dehydrogenase B from Lactococcus lactis: analysis by potentiometry, EPR spectroscopy, and ENDOR spectroscopy.
Mohsen A.W., Rigby S.E., Jensen K.F., Munro A.W., Scrutton N.S.
Dihydroorotate dehydrogenase B (DHODB) is a complex iron-sulfur flavoprotein that catalyzes the conversion of dihydroorotate to orotate and the reduction of NAD(+). The enzyme is a dimer of heterodimers containing an FMN, an FAD, and a 2Fe-2S center. UV-visible, EPR, and ENDOR spectroscopies have ... >> More
Dihydroorotate dehydrogenase B (DHODB) is a complex iron-sulfur flavoprotein that catalyzes the conversion of dihydroorotate to orotate and the reduction of NAD(+). The enzyme is a dimer of heterodimers containing an FMN, an FAD, and a 2Fe-2S center. UV-visible, EPR, and ENDOR spectroscopies have been used to determine the reduction potentials of the flavins and the 2Fe-2S center and to characterize radicals and their interactions. Reductive titration using dithionite indicates a five-electron capacity for DHODB. The midpoint reduction potential of the 2Fe-2S center (-212 +/-3 mV) was determined from analysis of absorption data at 540 nm, where absorption contributions from the two flavins are small. The midpoint reduction potentials of the oxidized/semiquinone (E(1)) and semiquinone/hydroquinone (E(2)) couples for the FMN (E(1) = -301 +/- 6 mV; E(2) = -252 +/-8 mV) and FAD (E(1) = -312 +/- 6 mV; E(2) = -297 +/-5 mV) were determined from analysis of spectral changes at 630 nm. Corresponding values for the midpoint reduction potentials for FMN (E(1) = -298 +/-4 mV; E(2) = -259 +/-5 mV) in the isolated catalytic subunit (subunit D, which lacks the 2Fe-2S center and FAD) are consistent with the values determined for the FMN couples in DHODB. During reductive titration of DHODB, small amounts of the neutral blue semiquinone are observed at approximately 630 nm, consistent with the measured midpoint reduction potentials of the flavins. An ENDOR spectrum of substrate-reduced DHODB identifies hyperfine couplings to proton nuclei similar to those recorded for the blue semiquinone of free flavins in aqueous solution, thus confirming the presence of this species in DHODB. Spectral features observed during EPR spectroscopy of dithionite-reduced DHODB are consistent with the midpoint reduction potentials determined using UV-visible spectroscopy and further identify an unusual EPR signal with very small rhombic anisotropy and g values of 2.02, 1.99, and 1.96. This unusual signal is assigned to the formation of a spin interacting state between the FMN semiquinone species and the reduced 2Fe-2S center. Reduction of DHODB using an excess of NADH or dihydroorotate produces EPR spectra that are distinct from those produced by dithionite. From potentiometric studies, the reduction of the 2Fe-2S center and the reduction of the FMN occur concomitantly. The study provides a detailed thermodynamic framework for electron transfer in this complex iron-sulfur flavoprotein. << Less
-
Biochemical characterization of the heteromeric Bacillus subtilis dihydroorotate dehydrogenase and its isolated subunits.
Kahler A.E., Nielsen F.S., Switzer R.L.
Bacillus subtilis dihydroorotate dehydrogenase (DHOD) consists of two subunits, PyrDI (M(r) = 33,094) and PyrDII (M(r) = 28,099). The two subunits were overexpressed jointly and individually and purified. PyrDI was an FMN-containing flavoprotein with an apparent native molecular mass of 85,000. Ov ... >> More
Bacillus subtilis dihydroorotate dehydrogenase (DHOD) consists of two subunits, PyrDI (M(r) = 33,094) and PyrDII (M(r) = 28,099). The two subunits were overexpressed jointly and individually and purified. PyrDI was an FMN-containing flavoprotein with an apparent native molecular mass of 85,000. Overexpressed PyrDII formed inclusion bodies and was purified by refolding and reconstitution. Refolded PyrDII bound 1 mol FAD and 1 mol [2Fe-2S] per mol PyrDII. Coexpression and purification of PyrDI and PyrDII yielded a native holoenzyme complex with an apparent native molecular mass of 114,000 that indicated a heterotetramer (PyrDI(2)PyrDII(2)). The holoenzyme possessed dihydroorotate:NAD(+) oxidoreductase activity and could also reduce menadione and artificial dyes. Purified PyrDI also possessed DHOD activity but could not reduce NAD(+). Compared to PyrDI, the holoenzyme had a more than 20-fold smaller K(m) value for dihydroorotate, an approximately 50-fold smaller K(i) value for orotate, and approximately 500-fold greater catalytic efficiency. Dihydroorotate:NAD(+) oxidoreductase activity could be recovered by mixing the purified subunits. Recovered activity showed a clear dependence on FAD reconstitution of PyrDII but not on reconstitution with FeS clusters. PyrDII had a strong preference for FAD over FMN and bound it with an estimated K(d) value of 4.9 +/-0.8 nM. pyrDII mutants containing alanine substitutions of the cysteine ligands to the [2Fe-2S] cluster failed to complement the pyr bradytrophy of a DeltapyrDII strain, indicating a requirement for the FeS cluster in PyrDII for normal function in vivo. << Less
Arch. Biochem. Biophys. 371:191-201(1999) [PubMed] [EuropePMC]
-
Two different dihydroorotate dehydrogenases in Lactococcus lactis.
Andersen P.S., Jansen P.J.G., Hammer K.
The pyrimidine de novo biosynthesis pathway has been characterized for a number of organisms. The general pathway consists of six enzymatic steps. In the characterization of the pyrimidine pathway of Lactococcus lactis, two different pyrD genes encoding dihydroorotate dehydrogenase were isolated. ... >> More
The pyrimidine de novo biosynthesis pathway has been characterized for a number of organisms. The general pathway consists of six enzymatic steps. In the characterization of the pyrimidine pathway of Lactococcus lactis, two different pyrD genes encoding dihydroorotate dehydrogenase were isolated. The nucleotide sequences of the two genes, pyrDa and pyrDb, have been determined. One of the deduced amino acid sequences has a high degree of homology to the Saccharomyces cerevisiae dihydroorotate dehydrogenase, and the other resembles the dihydroorotate dehydrogenase from Bacillus subtilis. It is possible to distinguish between the two enzymes in crude extracts by using different electron acceptors. We constructed mutants containing a mutated form of either one or the other or both of the pyrD genes. Only the double mutant is pyrimidine auxotrophic. << Less
J. Bacteriol. 176:3975-3982(1994) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
The B form of dihydroorotate dehydrogenase from Lactococcus lactis consists of two different subunits, encoded by the pyrDb and pyrK genes, and contains FMN, FAD, and [FeS] redox centers.
Nielsen F.S., Andersen P.S., Jensen K.F.
The B form of dihydroorotate dehydrogenase from Lactococcus lactis (DHOdehase B) is encoded by the pyrDb gene. However, recent genetic evidence has revealed that a co-transcribed gene, pyrK, is needed to achieve the proper physiological function of the enzyme. We have purified DHOdehase B from two ... >> More
The B form of dihydroorotate dehydrogenase from Lactococcus lactis (DHOdehase B) is encoded by the pyrDb gene. However, recent genetic evidence has revealed that a co-transcribed gene, pyrK, is needed to achieve the proper physiological function of the enzyme. We have purified DHOdehase B from two strains of Escherichia coli, which harbored either the pyrDb gene or both the pyrDb and the pyrK genes of L. lactis on multicopy plasmids. The enzyme encoded by pyrDb alone (herein called the delta-enzyme) was a bright yellow, dimeric protein that contained one molecule of tightly bound FMN per subunit. The delta-enzyme exhibited dihydroorotate dehydrogenase activity with dichloroindophenol, potassium hexacyanoferrate(III), and molecular oxygen as electron acceptors but could not use NAD+. The DHOdehase B purified from the E. coli strain that carried both the pyrDb and pyrK genes on a multicopy plasmid (herein called the deltakappa-enzyme) was quite different, since it was formed as a complex of equal amounts of the two polypeptides, i.e. two PyrDB and two PyrK subunits. The deltakappa-enzyme was orange-brown and contained 2 mol of FAD, 2 mol of FMN, and 2 mol of [2Fe-2S] redox clusters per mol of native protein as tightly bound prosthetic groups. The deltakappa-enzyme was able to use NAD+ as well as dichloroindophenol, potassium hexacyanoferrate(III), and to some extent molecular oxygen as electron acceptors for the conversion of dihydroorotate to orotate, and it was a considerably more efficient catalyst than the purified delta-enzyme. Based on these results and on analysis of published sequences, we propose that the architecture of the deltakappa-enzyme is representative for the dihydroorotate dehydrogenases from Gram-positive bacteria. << Less