Enzymes
UniProtKB help_outline | 15,135 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline glutaryl-CoA Identifier CHEBI:57378 Charge -5 Formula C26H37N7O19P3S InChIKeyhelp_outline SYKWLIJQEHRDNH-CKRMAKSASA-I SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 11 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
oxidized [electron-transfer flavoprotein]
Identifier
RHEA-COMP:10685
Reactive part
help_outline
- Name help_outline FAD Identifier CHEBI:57692 Charge -3 Formula C27H30N9O15P2 InChIKeyhelp_outline IMGVNJNCCGXBHD-UYBVJOGSSA-K SMILEShelp_outline Cc1cc2nc3c(nc(=O)[n-]c3=O)n(C[C@H](O)[C@H](O)[C@H](O)COP([O-])(=O)OP([O-])(=O)OC[C@H]3O[C@H]([C@H](O)[C@@H]3O)n3cnc4c(N)ncnc34)c2cc1C 2D coordinates Mol file for the small molecule Search links Involved in 170 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (2E)-butenoyl-CoA Identifier CHEBI:57332 Charge -4 Formula C25H36N7O17P3S InChIKeyhelp_outline KFWWCMJSYSSPSK-PAXLJYGASA-J SMILEShelp_outline C\C=C\C(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 20 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (Beilstein: 1900390; CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 997 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
reduced [electron-transfer flavoprotein]
Identifier
RHEA-COMP:10686
Reactive part
help_outline
- Name help_outline FADH2 Identifier CHEBI:58307 Charge -2 Formula C27H33N9O15P2 InChIKeyhelp_outline YPZRHBJKEMOYQH-UYBVJOGSSA-L SMILEShelp_outline Cc1cc2Nc3c([nH]c(=O)[nH]c3=O)N(C[C@H](O)[C@H](O)[C@H](O)COP([O-])(=O)OP([O-])(=O)OC[C@H]3O[C@H]([C@H](O)[C@@H]3O)n3cnc4c(N)ncnc34)c2cc1C 2D coordinates Mol file for the small molecule Search links Involved in 161 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:13389 | RHEA:13390 | RHEA:13391 | RHEA:13392 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Kinetic mechanism of glutaryl-CoA dehydrogenase.
Rao K.S., Albro M., Dwyer T.M., Frerman F.E.
Glutaryl-CoA dehydrogenase (GCD) is a homotetrameric enzyme containing one noncovalently bound FAD per monomer that oxidatively decarboxylates glutaryl-CoA to crotonyl-CoA and CO2. GCD belongs to the family of acyl-CoA dehydrogenases that are evolutionarily conserved in their sequence, structure, ... >> More
Glutaryl-CoA dehydrogenase (GCD) is a homotetrameric enzyme containing one noncovalently bound FAD per monomer that oxidatively decarboxylates glutaryl-CoA to crotonyl-CoA and CO2. GCD belongs to the family of acyl-CoA dehydrogenases that are evolutionarily conserved in their sequence, structure, and function. However, there are differences in the kinetic mechanisms among the different acyl-CoA dehydrogenases. One of the unanswered aspects is that of the rate-determining step in the steady-state turnover of GCD. In the present investigation, the major rate-determining step is identified to be the release of crotonyl-CoA product because the chemical steps and reoxidation of reduced FAD are much faster than the turnover of the wild-type GCD. Other steps are only partially rate-determining. This conclusion is based on the transit times of the individual reactions occurring in the active site of GCD. << Less
Biochemistry 45:15853-15861(2006) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Mammalian metabolism of glutaric acid.
Besrat A., Polan C.E., Henderson L.M.
-
Purification of glutaryl-CoA dehydrogenase from Pseudomonas sp., an enzyme involved in the anaerobic degradation of benzoate.
Hartel U., Eckel E., Koch J., Fuchs G., Linder D., Buckel W.
Cell-free extracts of Pseudomonas sp. strains KB 740 and K 172 both contained high levels of glutaryl-CoA dehydrogenase when grown anaerobically on benzoate or other aromatic compounds and with nitrate as electron acceptor. These aromatic compounds have in common benzoyl-CoA as the central aromati ... >> More
Cell-free extracts of Pseudomonas sp. strains KB 740 and K 172 both contained high levels of glutaryl-CoA dehydrogenase when grown anaerobically on benzoate or other aromatic compounds and with nitrate as electron acceptor. These aromatic compounds have in common benzoyl-CoA as the central aromatic intermediate of anaerobic metabolism. The enzymatic activity was almost absent in cells grown aerobically on benzoate regardless whether nitrate was present. Glutaryl-CoA dehydrogenase activity was also detected in cell-free extracts of Rhodopseudomonas, Rhodomicrobium and Rhodocyclus after phototrophic growth on benzoate. Parallel to the induction of glutaryl-CoA dehydrogenase as measured with ferricenium ion as electron acceptor, an about equally high glutaconyl-CoA decarboxylase activity was detected in cell-free extracts. The latter activity was measured with the NAD-dependent assay, as described for the biotin-containing sodium ion pump glutaconyl-CoA decarboxylase from glutamate fermenting bacteria. Glutaryl-CoA dehydrogenase was purified to homogeneity from both Pseudomonas strains. The enzymes catalyse the decarboxylation of glutaconyl-CoA at about the same rate as the oxidative decarboxylation of glutaryl-CoA. The green enzymes are homotetramers (m = 170 kDa) and contain 1 mol FAD per subunit. No inhibition was observed with avidin indicating the absence of biotin. The N-terminal sequences of the enzymes from both strains are similar (65%). << Less
Arch Microbiol 159:174-181(1993) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
The functions of the flavin contact residues, alphaArg249 and betaTyr16, in human electron transfer flavoprotein.
Dwyer T.M., Zhang L., Muller M., Marrugo F., Frerman F.
Arg249 in the large (alpha) subunit of human electron transfer flavoprotein (ETF) heterodimer is absolutely conserved throughout the ETF superfamily. The guanidinium group of alphaArg249 is within van der Waals contact distance and lies perpendicular to the xylene subnucleus of the flavin ring, ne ... >> More
Arg249 in the large (alpha) subunit of human electron transfer flavoprotein (ETF) heterodimer is absolutely conserved throughout the ETF superfamily. The guanidinium group of alphaArg249 is within van der Waals contact distance and lies perpendicular to the xylene subnucleus of the flavin ring, near the region proposed to be involved in electron transfer with medium chain acyl-CoA dehydrogenase. The backbone amide hydrogen of alphaArg249 is within hydrogen bonding distance of the carbonyl oxygen at the flavin C(2). alphaArg249 may modulate the potentials of the two flavin redox couples by hydrogen bonding the carbonyl oxygen at C(2) and by providing delocalized positive charge to neutralize the anionic semiquinone and anionic hydroquinone of the flavin. The potentials of the oxidized/semiquinone and semiquinone/hydroquinone couples decrease in an alphaR249K mutant ETF generated by site directed mutagenesis and expression in Escherichia coli, without major alterations of the flavin environment as judged by spectral criteria. The steady state turnover of medium chain acyl-CoA dehydrogenase and glutaryl-CoA dehydrogenase decrease greater than 90% as a result of the alphaR249Ks mutation. In contrast, the steady state turnover of short chain acyl-CoA dehydrogenase was decreased about 38% when alphaR249K ETF was the electron acceptor. Stopped flow absorbance measurements of the oxidation of reduced medium chain acyl-CoA dehydrogenase/octenoyl-CoA product complex by wild type human ETF at 3 degrees C are biphasic (t(1/2)=12 ms and 122 ms). The rate of oxidation of this reduced binary complex of the dehydrogenase by the alphaR249K mutant ETF is extremely slow and could not be reasonably estimated. alphaAsp253 is proposed to function with alphaArg249 in the electron transfer pathway from medium chain acyl-CoA dehydrogenase to ETF. The steady state kinetic constants of the dehydrogenase were not altered when ETF containing an alphaD253A mutant was the substrate. However, t(1/2) of the rapid phase of oxidation of the reduced medium chain acyl-CoA dehydrogenase/octenoyl-CoA charge transfer complex almost doubled. betaTyr16 lies on a loop near the C(8) methyl group, and is also near the proposed site for interflavin electron transfer with medium chain acyl-CoA dehydrogenase. The tyrosine residue makes van der Waals contact with the C(8) methyl group of the flavin in human ETF and Paracoccus denitrificans ETF (as betaTyr13) and lies at a 30 degrees C angle with the plane of the flavin. Human betaTyr16 was substituted with leucine and alanine residues to investigate the role of this residue in the modulation of the flavin redox potentials and in electron transfer to ETF. In betaY16L ETF, the potentials of the flavin were slightly reduced, and steady state kinetic constants were modestly altered. Substitution of an alanine residue for betaTyr16 yields an ETF with potentials very similar to the wild type but with steady state kinetic properties similar to betaY16L ETF. It is unlikely that the beta methyl group of the alanine residue interacts with the flavin C(8) methyl. Neither substitution of betaTyr16 had a large effect on the fast phase of ETF reduction by medium chain acyl-CoA dehydrogenase. << Less
Biochim Biophys Acta 1433:139-152(1999) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
Comments
Multi-step reaction: RHEA:20589 and RHEA:60572.