Reaction participants Show >> << Hide
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline sarcosine Identifier CHEBI:57433 Charge 0 Formula C3H7NO2 InChIKeyhelp_outline FSYKKLYZXJSNPZ-UHFFFAOYSA-N SMILEShelp_outline C[NH2+]CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 17 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline formaldehyde Identifier CHEBI:16842 (Beilstein: 1209228; CAS: 50-00-0) help_outline Charge 0 Formula CH2O InChIKeyhelp_outline WSFSSNUMVMOOMR-UHFFFAOYSA-N SMILEShelp_outline [H]C([H])=O 2D coordinates Mol file for the small molecule Search links Involved in 141 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline glycine Identifier CHEBI:57305 Charge 0 Formula C2H5NO2 InChIKeyhelp_outline DHMQDGOQFOQNFH-UHFFFAOYSA-N SMILEShelp_outline [NH3+]CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 142 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O2 Identifier CHEBI:16240 (Beilstein: 3587191; CAS: 7722-84-1) help_outline Charge 0 Formula H2O2 InChIKeyhelp_outline MHAJPDPJQMAIIY-UHFFFAOYSA-N SMILEShelp_outline [H]OO[H] 2D coordinates Mol file for the small molecule Search links Involved in 449 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:13313 | RHEA:13314 | RHEA:13315 | RHEA:13316 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
M-CSA help_outline |
Publications
-
Monomeric sarcosine oxidase: structure of a covalently flavinylated amine oxidizing enzyme.
Trickey P., Wagner M.A., Jorns M.S., Mathews F.S.
<h4>Background</h4>Monomeric sarcosine oxidases (MSOXs) are among the simplest members of a recently recognized family of eukaryotic and prokaryotic enzymes that catalyze similar oxidative reactions with various secondary or tertiary amino acids and contain covalently bound flavins. Other members ... >> More
<h4>Background</h4>Monomeric sarcosine oxidases (MSOXs) are among the simplest members of a recently recognized family of eukaryotic and prokaryotic enzymes that catalyze similar oxidative reactions with various secondary or tertiary amino acids and contain covalently bound flavins. Other members of this family include heterotetrameric sarcosine oxidase, N-methyltryptophan oxidase and pipecolate oxidase. Mammalian sarcosine dehydrogenase and dimethylglycine dehydrogenase may be more distantly related family members.<h4>Results</h4>The X-ray crystal structure of MSOX from Bacillus sp. B-0618, expressed in Escherichia coli, has been solved at 2.0 A resolution by multiwavelength anomalous dispersion (MAD) from crystals of the selenomethionine-substituted enzyme. Fourteen selenium sites, belonging to two MSOX molecules in the asymmetric unit, were used for MAD phasing and to define the local twofold symmetry axis for electron-density averaging. The structures of the native enzyme and of two enzyme-inhibitor complexes were also determined.<h4>Conclusions</h4>MSOX is a two-domain protein with an overall topology most similar to that of D-amino acid oxidase, with which it shares 14% sequence identity. The flavin ring is located in a very basic environment, making contact with sidechains of arginine, lysine, histidine and the N-terminal end of a helix dipole. The flavin is covalently attached through an 8alpha-S-cysteinyl linkage to Cys315 of the catalytic domain. Covalent attachment is probably self-catalyzed through interactions with the positive sidechains and the helix dipole. Substrate binding is probably stabilized by hydrogen bonds between the substrate carboxylate and two basic sidechains, Arg52 and Lys348, located above the re face of the flavin ring. << Less
-
Role of the covalent flavin linkage in monomeric sarcosine oxidase.
Hassan-Abdallah A., Zhao G., Jorns M.S.
Monomeric sarcosine oxidase (MSOX) is a prototypical member of a recently recognized family of amine-oxidizing enzymes that all contain covalently bound flavin. Mutation of the covalent flavin attachment site in MSOX produces a catalytically inactive apoprotein (apoCys315Ala) that forms an unstabl ... >> More
Monomeric sarcosine oxidase (MSOX) is a prototypical member of a recently recognized family of amine-oxidizing enzymes that all contain covalently bound flavin. Mutation of the covalent flavin attachment site in MSOX produces a catalytically inactive apoprotein (apoCys315Ala) that forms an unstable complex with FAD (K(d) = 100 muM), similar to that observed with wild-type apoMSOX where the complex is formed as an intermediate during covalent flavin attachment. In situ reconstitution of sarcosine oxidase activity is achieved by assaying apoCys315Ala in the presence of FAD or 8-nor-8-chloroFAD, an analogue with an approximately 55 mV higher reduction potential. After correction for an estimated 65% reconstitutable apoprotein, the specific activity of apoCys315Ala in the presence of excess FAD or 8-nor-8-chloroFAD is 14% or 80%, respectively, of that observed with wild-type MSOX. Unlike oxidized flavin, apoCys315Ala exhibits a high affinity for reduced flavin, as judged by results obtained with reduced 5-deazaFAD (5-deazaFADH(2)) where the estimated binding stoichiometry is unaffected by dialysis. The Cys315Ala.5-deazaFADH(2) complex is also air-stable but is readily oxidized by sarcosine imine, a reaction accompanied by release of weakly bound oxidized 5-deazaFAD. The dramatic difference in the binding affinity of apoCys315Ala for oxidized and reduced flavin indicates that the protein environment must induce a sizable increase in the reduction potential of noncovalently bound flavin (DeltaE(m) approximately 120 mV). The covalent flavin linkage prevents loss of weakly bound oxidized FAD and also modulates the flavin reduction potential in conjunction with the protein environment. << Less
-
Corynebacterium sarcosine oxidase: a unique enzyme having covalently-bound and noncovalently-bound flavins.
Hayashi S., Nakamura S., Suzuki M.
Biochem. Biophys. Res. Commun. 96:924-930(1980) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Purification and some properties of sarcosine oxidase from Corynebacterium sp. U-96.
Suzuki M.
J. Biochem. 89:599-607(1981) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.