Reaction participants Show >> << Hide
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-cysteine Identifier CHEBI:35235 Charge 0 Formula C3H7NO2S InChIKeyhelp_outline XUJNEKJLAYXESH-REOHCLBHSA-N SMILEShelp_outline [NH3+][C@@H](CS)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 61 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-glutamate Identifier CHEBI:29985 (CAS: 11070-68-1) help_outline Charge -1 Formula C5H8NO4 InChIKeyhelp_outline WHUUTDBJXJRKMK-VKHMYHEASA-M SMILEShelp_outline [NH3+][C@@H](CCC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 244 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline γ-L-glutamyl-L-cysteine Identifier CHEBI:58173 Charge -1 Formula C8H13N2O5S InChIKeyhelp_outline RITKHVBHSGLULN-WHFBIAKZSA-M SMILEShelp_outline [NH3+][C@@H](CCC(=O)N[C@@H](CS)C([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:13285 | RHEA:13286 | RHEA:13287 | RHEA:13288 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline | ||||
Reactome help_outline |
Publications
-
Escherichia coli gamma-glutamylcysteine synthetase. Two active site metal ions affect substrate and inhibitor binding.
Kelly B.S., Antholine W.E., Griffith O.W.
Gamma-glutamylcysteine synthetase (gamma-GCS, glutamate-cysteine ligase), which catalyzes the first and rate-limiting step in glutathione biosynthesis, is present in many prokaryotes and in virtually all eukaryotes. Although all eukaryotic gamma-GCS isoforms examined to date are rapidly inhibited ... >> More
Gamma-glutamylcysteine synthetase (gamma-GCS, glutamate-cysteine ligase), which catalyzes the first and rate-limiting step in glutathione biosynthesis, is present in many prokaryotes and in virtually all eukaryotes. Although all eukaryotic gamma-GCS isoforms examined to date are rapidly inhibited by buthionine sulfoximine (BSO), most reports indicate that bacterial gamma-GCS is resistant to BSO. We have confirmed the latter finding with Escherichia coli gamma-GCS under standard assay conditions, showing both decreased initial binding affinity for BSO and a reduced rate of BSO-mediated inactivation compared with mammalian isoforms. We also find that substitution of Mn2+ for Mg2+ in assay mixtures increases both the initial binding affinity of BSO and the rate at which BSO causes mechanism-based inactivation. Similarly, the specificity of E. coli gamma-GCS for its amino acid substrates is broadened in the presence of Mn2+, and the rate of reaction for some very poor substrates is improved. These results suggest that divalent metal ions have a role in amino acid binding to E. coli gamma-GCS. Electron paramagnetic resonance (EPR) studies carried out with Mn2+ show that E. coli gamma-GCS binds two divalent metal ions; Kd values for Mn2+ are 1.1 microm and 82 microm, respectively. Binding of l-glutamate or l-BSO to the two Mn2+/gamma-GCS species produces additional upfield and downfield X-band EPR hyperfine lines at 45 G intervals, a result indicating that the two Mn2+ are spin-coupled and thus apparently separated by 5 A or less in the active site. Additional EPR studies in which Cu2+ replaced Mg2+ or Mn2+ suggest that Cu2+ is bound by one N and three O ligands in the gamma-GCS active site. The results are discussed in the context of the catalytic mechanism of gamma-GCS and its relationship to the more fully characterized glutamine synthetase reaction. << Less
-
A novel catalytic ability of gamma-glutamylcysteine synthetase of Escherichia coli and its application in theanine production.
Miyake K., Kakita S.
Gamma-glutamylcysteine synthetase (gammaGCS, EC 6.3.2.2) catalyzes the formation of gamma-glutamylcysteine from L-glutamic acid (Glu) and L-cysteine (Cys) in an ATP-dependent manner. While gammaGCS can use various amino acids as substrate, little is known about whether it can use non-amino acid co ... >> More
Gamma-glutamylcysteine synthetase (gammaGCS, EC 6.3.2.2) catalyzes the formation of gamma-glutamylcysteine from L-glutamic acid (Glu) and L-cysteine (Cys) in an ATP-dependent manner. While gammaGCS can use various amino acids as substrate, little is known about whether it can use non-amino acid compounds in place of Cys. We determined that gammaGCS from Escherichia coli has the ability to combine Glu and amines to form gamma-glutamylamides. The reaction rate depended on the length of the methylene chain of the amines in the following order: n-propylamine > butylamine > ethylamine >> methylamine. The optimal pH for the reaction was narrower and more alkaline than for the reaction with an amino acid. The newly found catalytic ability of gammaGCS was used in the production of theanine (gamma-glutamylethylamine). The resting cells of E. coli expressing gammaGCS, in which ATP was regenerated through glycolysis, synthesized 12.1 mM theanine (18 h) from 429 mM ethylamine. << Less
Biosci Biotechnol Biochem 73:2677-2683(2009) [PubMed] [EuropePMC]
-
Escherichia coli B gamma-glutamylcysteine synthetase: modification, purification, crystallization and preliminary crystallographic analysis.
Hibi T., Hisada H., Nakatsu T., Kato H., Oda J.
Escherichia coli B gamma-glutamylcysteine synthetase (gammaGCS) catalyzes the ATP-dependent coupling of L-Glu and L-Cys to form the glutathione precursor gamma-L-Glu-Cys and is a target for development of potential therapeutic agents. By introducing four point mutations of surface-exposed cysteine ... >> More
Escherichia coli B gamma-glutamylcysteine synthetase (gammaGCS) catalyzes the ATP-dependent coupling of L-Glu and L-Cys to form the glutathione precursor gamma-L-Glu-Cys and is a target for development of potential therapeutic agents. By introducing four point mutations of surface-exposed cysteine residues to serine, the gammaGCS was purified to homogeneity; single crystals have been obtained using the hanging-drop vapour-diffusion method with sodium formate. The gammaGCS crystal diffracted to 2.8 A and belongs to space group R3, with unit-cell parameters a = b = 326.7, c = 103.9 A. << Less
Acta Crystallogr D Biol Crystallogr 58:316-318(2002) [PubMed] [EuropePMC]
-
Crystal structure of gamma-glutamylcysteine synthetase: insights into the mechanism of catalysis by a key enzyme for glutathione homeostasis.
Hibi T., Nii H., Nakatsu T., Kimura A., Kato H., Hiratake J., Oda J.
Gamma-glutamylcysteine synthetase (gammaGCS), a rate-limiting enzyme in glutathione biosynthesis, plays a central role in glutathione homeostasis and is a target for development of potential therapeutic agents against parasites and cancer. We have determined the crystal structures of Escherichia c ... >> More
Gamma-glutamylcysteine synthetase (gammaGCS), a rate-limiting enzyme in glutathione biosynthesis, plays a central role in glutathione homeostasis and is a target for development of potential therapeutic agents against parasites and cancer. We have determined the crystal structures of Escherichia coli gammaGCS unliganded and complexed with a sulfoximine-based transition-state analog inhibitor at resolutions of 2.5 and 2.1 A, respectively. In the crystal structure of the complex, the bound inhibitor is phosphorylated at the sulfoximido nitrogen and is coordinated to three Mg2+ ions. The cysteine-binding site was identified; it is formed inductively at the transition state. In the unliganded structure, an open space exists around the representative cysteine-binding site and is probably responsible for the competitive binding of glutathione. Upon inhibitor binding, the side chains of Tyr-241 and Tyr-300 turn, forming a hydrogen-bonding triad with the carboxyl group of the inhibitor's cysteine moiety, allowing this moiety to fit tightly into the cysteine-binding site with concomitant accommodation of its side chain into a shallow pocket. This movement is caused by a conformational change of a switch loop (residues 240-249). Based on this crystal structure, the cysteine-binding sites of mammalian and parasitic gammaGCSs were predicted by multiple sequence alignment, although no significant sequence identity exists between the E. coli gammaGCS and its eukaryotic homologues. The identification of this cysteine-binding site provides important information for the rational design of novel gammaGCS inhibitors. << Less
Proc Natl Acad Sci U S A 101:15052-15057(2004) [PubMed] [EuropePMC]
-
Arabidopsis thaliana glutamate-cysteine ligase: functional properties, kinetic mechanism, and regulation of activity.
Jez J.M., Cahoon R.E., Chen S.
In plants, glutathione accumulates in response to different stress stimuli as a protective mechanism, but only limited biochemical information is available on the plant enzymes that synthesize glutathione. Glutamatecysteine ligase (GCL) catalyzes the first step in glutathione biosynthesis and play ... >> More
In plants, glutathione accumulates in response to different stress stimuli as a protective mechanism, but only limited biochemical information is available on the plant enzymes that synthesize glutathione. Glutamatecysteine ligase (GCL) catalyzes the first step in glutathione biosynthesis and plays an important role in regulating the intracellular redox environment. Because the putative Arabidopsis thaliana GCL (AtGCL) displays no significant homology to the GCL from bacteria and other eukaryotes, the identity of this protein as a GCL has been debated. We have purified AtGCL from an Escherichia coli expression system and demonstrated that the recombinant enzyme catalyzes the ATP-dependent formation of gamma-glutamylcysteine from glutamate (Km = 9.1 mm) and cysteine (Km = 2.7 mm). Glutathione feedback inhibits AtGCL (Ki approximately 1.0 mm). As with other GCL, buthionine sulfoximine and cystamine inactivate the Arabidopsis enzyme but with inactivation rates much slower than those of the mammalian, bacterial, and nematode enzymes. The slower inactivation rates observed with AtGCL suggest that the active site differs structurally from that of other GCL. Global fitting analysis of initial velocity data indicates that a random terreactant mechanism with a preferred binding order best describes the kinetic mechanism of AtGCL. Unlike the mammalian GCL, which consists of a catalytic subunit and a regulatory subunit, AtGCL functions and is regulated as a monomeric protein. In response to redox environment, AtGCL undergoes a reversible conformational change that modulates the enzymatic activity of the monomer. These results explain the reported posttranslational change in AtGCL activity in response to oxidative stress. << Less