Reaction participants Show >> << Hide
- Name help_outline L-threonine Identifier CHEBI:57926 Charge 0 Formula C4H9NO3 InChIKeyhelp_outline AYFVYJQAPQTCCC-GBXIJSLDSA-N SMILEShelp_outline C[C@@H](O)[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 32 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,186 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (2S)-2-amino-3-oxobutanoate Identifier CHEBI:78948 Charge 0 Formula C4H7NO3 InChIKeyhelp_outline SAUCHDKDCUROAO-VKHMYHEASA-N SMILEShelp_outline CC(=O)[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,116 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:13161 | RHEA:13162 | RHEA:13163 | RHEA:13164 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline | ||||
Reactome help_outline |
Publications
-
L-Threonine dehydrogenase from the hyperthermophilic archaeon Pyrococcus horikoshii OT3: gene cloning and enzymatic characterization.
Shimizu Y., Sakuraba H., Kawakami R., Goda S., Kawarabayasi Y., Ohshima T.
A gene encoding the L-threonine dehydrogenase homologue has been identified in a hyperthermophlic archaeon Pyrococcus horikoshii OT3 via genome sequencing. The gene was cloned and expressed in Escherichia coli. The purified enzyme from the recombinant E. coli was extremely thermostable; the activi ... >> More
A gene encoding the L-threonine dehydrogenase homologue has been identified in a hyperthermophlic archaeon Pyrococcus horikoshii OT3 via genome sequencing. The gene was cloned and expressed in Escherichia coli. The purified enzyme from the recombinant E. coli was extremely thermostable; the activity was not lost after incubation at 100 degrees C for 20 min. The enzyme (molecular mass: 192 kDa) is composed of a tetrameric structure with a type of subunit (41 kDa). The enzyme is specific for NAD and utilizes L-threonine, L-serine and DL-threo-3-phenylserine as the substrate. The enzyme required divalent cations such as Zn(2+), Mn(2+) and Co(2+) for the activity, and contained one zinc ion/subunit. The K(m) values for L-threonine and NAD at 50 degrees C were 0.20 mM and 0.024 mM, respectively. Kinetic analyses indicated that the L-threonine oxidation reaction proceeds via a random mechanism with regard to the binding of L-threonine and NAD. The enzyme showed pro-R stereospecificity for hydrogen transfer at the C4 position of the nicotinamide moiety of NADH. This is the first description of the characteristics of an L-threonine dehydrogenase from the archaea domain. << Less
Extremophiles 9:317-324(2005) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Production and characterization of a thermostable L-threonine dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus.
Machielsen R., van der Oost J.
The gene encoding a threonine dehydrogenase (TDH) has been identified in the hyperthermophilic archaeon Pyrococcus furiosus. The Pf-TDH protein has been functionally produced in Escherichia coli and purified to homogeneity. The enzyme has a tetrameric conformation with a molecular mass of approxim ... >> More
The gene encoding a threonine dehydrogenase (TDH) has been identified in the hyperthermophilic archaeon Pyrococcus furiosus. The Pf-TDH protein has been functionally produced in Escherichia coli and purified to homogeneity. The enzyme has a tetrameric conformation with a molecular mass of approximately 155 kDa. The catalytic activity of the enzyme increases up to 100 degrees C, and a half-life of 11 min at this temperature indicates its thermostability. The enzyme is specific for NAD(H), and maximal specific activities were detected with L-threonine (10.3 U x mg(-1)) and acetoin (3.9 U x mg(-1)) in the oxidative and reductive reactions, respectively. Pf-TDH also utilizes L-serine and D-threonine as substrate, but could not oxidize other L-amino acids. The enzyme requires bivalent cations such as Zn2+ and Co2+ for activity and contains at least one zinc atom per subunit. Km values for L-threonine and NAD+ at 70 degrees C were 1.5 mm and 0.055 mm, respectively. << Less
FEBS J. 273:2722-2729(2006) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Kinetic study of thermostable L-threonine dehydrogenase from an archaeon Pyrococcus horikoshii.
Higashi N., Fukada H., Ishikawa K.
In the genome data base of the hyperthermophilic archaeon Pyrococcus horikoshii, an open reading frame with sequence homology to a gene encoding alcohol dehydrogenase was found. It was demonstrated that the encoded enzyme was a thermostable L-threonine dehydrogenase which can oxidize the hydroxy a ... >> More
In the genome data base of the hyperthermophilic archaeon Pyrococcus horikoshii, an open reading frame with sequence homology to a gene encoding alcohol dehydrogenase was found. It was demonstrated that the encoded enzyme was a thermostable L-threonine dehydrogenase which can oxidize the hydroxy alkyl residue of L-threonine associated with the reduction of NAD+ or NADP+. This enzyme is a member of the zinc-containing L-threonine dehydrogenase family. One enzyme molecule contained one zinc atom, and this metal was considered to contribute to the hyperthermostablility of the enzyme. The reaction of the enzyme proceeded via a sequential mechanism. The Michaelis constants (Km) for L-threonine and NAD+ were 0.013 and 0.010 mM, respectively, and the maximum reaction rate (Vmax) was 1.75 mmol NADH formed/min/mg-protein at 65 degrees C. The Km values for both L-threonine and NADP+ were larger than those for L-threonine and NAD+ with a similar Vmax value. These results indicate that the enzyme has lower affinity to NADP+ than to NAD+, and the binding affinity for L-threonine depends on the coenzymes. << Less
J. Biosci. Bioeng. 99:175-180(2005) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Crystallization and preliminary X-ray diffraction analysis of L-threonine dehydrogenase (TDH) from the hyperthermophilic archaeon Thermococcus kodakaraensis.
Bowyer A., Mikolajek H., Wright J.N., Coker A., Erskine P.T., Cooper J.B., Bashir Q., Rashid N., Jamil F., Akhtar M.
The enzyme L-threonine dehydrogenase catalyses the NAD(+)-dependent conversion of L-threonine to 2-amino-3-ketobutyrate, which is the first reaction of a two-step biochemical pathway involved in the metabolism of threonine to glycine. Here, the crystallization and preliminary crystallographic anal ... >> More
The enzyme L-threonine dehydrogenase catalyses the NAD(+)-dependent conversion of L-threonine to 2-amino-3-ketobutyrate, which is the first reaction of a two-step biochemical pathway involved in the metabolism of threonine to glycine. Here, the crystallization and preliminary crystallographic analysis of L-threonine dehydrogenase (Tk-TDH) from the hyperthermophilic organism Thermococcus kodakaraensis KOD1 is reported. This threonine dehydrogenase consists of 350 amino acids, with a molecular weight of 38 kDa, and was prepared using an Escherichia coli expression system. The purified native protein was crystallized using the hanging-drop vapour-diffusion method and crystals grew in the tetragonal space group P4(3)2(1)2, with unit-cell parameters a = b = 124.5, c = 271.1 A. Diffraction data were collected to 2.6 A resolution and preliminary analysis indicates that there are four molecules in the asymmetric unit of the crystal. << Less
Acta Crystallogr Sect F Struct Biol Cryst Commun 64:828-830(2008) [PubMed] [EuropePMC]
-
L-threonine dehydrogenase. Purification and properties of the homogeneous enzyme from Escherichia coli K-12.
Boylan S.A., Dekker E.E.
L-Threonine dehydrogenase, which catalyzes the conversion of L-threonine to aminoacetone + CO2 presumably via the intermediate formation of alpha-amino-beta-ketobutyrate, has been purified to apparent homogeneity from extracts of a mutant of Escherichia coli K-12 which has constitutively derepress ... >> More
L-Threonine dehydrogenase, which catalyzes the conversion of L-threonine to aminoacetone + CO2 presumably via the intermediate formation of alpha-amino-beta-ketobutyrate, has been purified to apparent homogeneity from extracts of a mutant of Escherichia coli K-12 which has constitutively derepressed levels of the enzyme. Three fractionation steps were used including controlled heat denaturation, DEAE-Sephadex chromatography, and blue dextran-Sepharose affinity chromatography. The purified enzyme migrated as a single band, coincident with dehydrogenase activity, when electrophoresed on polyacrylamide gels at pH 8.0 and 9.5. Electrophoresis in 1% sodium dodecyl sulfate also showed one band and a single schlieren peak was seen during sedimentation velocity centrifugation. The enzyme has an apparent molecular weight of 140,000 +/-4,000 as determined by sucrose density and sedimentation equilibrium centrifugation. Based on electrophoresis in 1% sodium dodecyl sulfate, sedimentation equilibrium centrifugation in 6 M guanidine.HCl, and cross-linking with dimethyl suberimidate, the molecule is a tetramer consisting of identical (or nearly identical) subunits with Mr approximately equal to 35,000. L-Threonine dehydrogenase is specific for NAD+ or NAD+ analogs and utilizes L-threonine, D-allothreonine, or L-threonine amide as the best substrates. In 50 mM Tris.HCl buffer (pH 8.4) and 37 degrees C, the Km values for L-threonine and NAD+ are 1.43 and 0.19 mM, respectively. The enzyme has a pH optimum of 10.3, is activated by Mn2+, and shows a substantial loss of activity when treated with certain sulfhydryl-reacting reagents. << Less
J. Biol. Chem. 256:1809-1815(1981) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Highly thermostable L-threonine dehydrogenase from the hyperthermophilic archaeon Thermococcus kodakaraensis.
Bashir Q., Rashid N., Jamil F., Imanaka T., Akhtar M.
l-Threonine dehydrogenase, a key enzyme in the l-threonine metabolism, catalyses the NAD(+)-dependent conversion of l-threonine to 2-amino-3-ketobutyrate, that non-enzymically decarboxylates to aminoacetone. A search of the genome sequence of hyperthermophilic archaeon, Thermococcus kodakaraensis ... >> More
l-Threonine dehydrogenase, a key enzyme in the l-threonine metabolism, catalyses the NAD(+)-dependent conversion of l-threonine to 2-amino-3-ketobutyrate, that non-enzymically decarboxylates to aminoacetone. A search of the genome sequence of hyperthermophilic archaeon, Thermococcus kodakaraensis revealed the presence of a closely related orthologue (TK0916) of archaeal and bacterial l-threonine dehydrogenase genes. Expression in Escherichia coli, purification and characterization of the TK0916 gene product revealed that this gene actually coded for a protein with high levels of l-threonine dehydrogenase activity (7.26 U mg(-1)). The enzyme exhibited highest activity at pH 12 and 90 degrees C. The K(m) values for l-threonine and NAD(+) at 50 degrees C were 1.6 mM and 0.028 mM, respectively. The enzyme activity was dependent on divalent cations. The half-life of the enzyme was more than 2 h at 85 degrees C and 24 min in boiling water. This is the most thermostable threonine dehydrogenase exhibiting optimal activity at the highest pH (12) reported to date. This is the first report on the characterization of a TDH from genus Thermococcus. << Less
J. Biochem. 146:95-102(2009) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
L-threonine dehydrogenase from Escherichia coli. Identification of an active site cysteine residue and metal ion studies.
Epperly B.R., Dekker E.E.
Pure L-threonine dehydrogenase from Escherichia coli is a tetrameric protein (Mr = 148,000) with 6 half-cystine residues/subunit; its catalytic activity as isolated is stimulated 5-10-fold by added Mn2+ or Cd2+. The peptide containing the 1 cysteine/subunit which reacts selectively with iodoacetat ... >> More
Pure L-threonine dehydrogenase from Escherichia coli is a tetrameric protein (Mr = 148,000) with 6 half-cystine residues/subunit; its catalytic activity as isolated is stimulated 5-10-fold by added Mn2+ or Cd2+. The peptide containing the 1 cysteine/subunit which reacts selectively with iodoacetate, causing complete loss of enzymatic activity, has been isolated and sequenced; this cysteine residue occupies position 38. Neutron activation and atomic absorption analyses of threonine dehydrogenase as isolated in homogeneous form now show that it contains 1 mol of Zn2+/mol of enzyme subunit. Removal of the Zn2+ with 1,10-phenanthroline demonstrates a good correlation between the remaining enzymatic activity and the zinc content. Complete removal of the Zn2+ yields an unstable protein, but the native metal ion can be exchanged by either 65Zn2+, Co2+, or Cd2+ with no change in specific catalytic activity. Mn2+ added to and incubated with the native enzyme, the 65Zn2(+)-, the Co2(+)-, or the Cd2(+)-substituted form of the enzyme stimulates dehydrogenase activity to the same extent. These studies along with previously observed structural homologies further establish threonine dehydrogenase of E. coli as a member of the zinc-containing long chain alcohol/polyol dehydrogenases; it is unique among these enzymes in that its activity is stimulated by Mn2+ or Cd2+. << Less
J. Biol. Chem. 266:6086-6092(1991) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
Comments
RHEA:13161 part of RHEA:33239.