Enzymes
UniProtKB help_outline | 6 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
-
Name help_outline
di-trans,poly-cis-dolichol
Identifier
CHEBI:16091
Charge
0
Formula
(C5H8)nC20H36O
Search links
Involved in 7 reaction(s)
Find proteins in UniProtKB for this molecule
Form(s) in this reaction:
-
Identifier: RHEA-COMP:19495Polymer name: a di-trans,poly-cis-dolicholPolymerization index help_outline n-1Formula C20H36O(C5H8)n-1Charge (0)(0)n-1Mol File for the polymer
-
- Name help_outline CTP Identifier CHEBI:37563 (Beilstein: 4732530) help_outline Charge -4 Formula C9H12N3O14P3 InChIKeyhelp_outline PCDQPRRSZKQHHS-XVFCMESISA-J SMILEShelp_outline Nc1ccn([C@@H]2O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]2O)c(=O)n1 2D coordinates Mol file for the small molecule Search links Involved in 82 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CDP Identifier CHEBI:58069 Charge -3 Formula C9H12N3O11P2 InChIKeyhelp_outline ZWIADYZPOWUWEW-XVFCMESISA-K SMILEShelp_outline Nc1ccn([C@@H]2O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]2O)c(=O)n1 2D coordinates Mol file for the small molecule Search links Involved in 27 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Name help_outline
dolichyl phosphate
Identifier
CHEBI:57683
Charge
-2
Formula
C20H35O4P(C5H8)n
Search links
Involved in 24 reaction(s)
Find proteins in UniProtKB for this molecule
Form(s) in this reaction:
-
Identifier: RHEA-COMP:19498Polymer name: a di-trans,poly-cis-dolichyl phosphatePolymerization index help_outline n-1Formula C20H35O4P(C5H8)n-1Charge (-2)(0)n-1Mol File for the polymer
-
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:13133 | RHEA:13134 | RHEA:13135 | RHEA:13136 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Hypoglycosylation due to dolichol metabolism defects.
Denecke J., Kranz C.
Dolichol phosphate is a lipid carrier embedded in the endoplasmic reticulum (ER) membrane essential for the synthesis of N-glycans, GPI-anchors and protein C- and O-mannosylation. The availability of dolichol phosphate on the cytosolic site of the ER is rate-limiting for N-glycosylation. The abund ... >> More
Dolichol phosphate is a lipid carrier embedded in the endoplasmic reticulum (ER) membrane essential for the synthesis of N-glycans, GPI-anchors and protein C- and O-mannosylation. The availability of dolichol phosphate on the cytosolic site of the ER is rate-limiting for N-glycosylation. The abundance of dolichol phosphate is influenced by its de novo synthesis and the recycling of dolichol phosphate from the luminal leaflet to the cytosolic leaflet of the ER. Enzymatic defects affecting the de novo synthesis and the recycling of dolichol phosphate result in glycosylation defects in yeast or cell culture models, and are expected to cause glycosylation disorders in humans termed congenital disorders of glycosylation (CDG). Currently only one disorder affecting the dolichol phosphate metabolism has been described. In CDG-Im, the final step of the de novo synthesis of dolichol phosphate catalyzed by the enzyme dolichol kinase is affected. The defect causes a severe phenotype with death in early infancy. The present review summarizes the biosynthesis of dolichol-phosphate and the recycling pathway with respect to possible defects of the dolichol phosphate metabolism causing glycosylation defects in humans. << Less
Biochim Biophys Acta 1792:888-895(2009) [PubMed] [EuropePMC]
-
Characterization of the yeast DGK1-encoded CTP-dependent diacylglycerol kinase.
Han G.-S., O'Hara L., Siniossoglou S., Carman G.M.
The Saccharomyces cerevisiae DGK1 gene encodes a diacylglycerol kinase enzyme that catalyzes the formation of phosphatidate from diacylglycerol. Unlike the diacylglycerol kinases from bacteria, plants, and animals, the yeast enzyme utilizes CTP, instead of ATP, as the phosphate donor in the reacti ... >> More
The Saccharomyces cerevisiae DGK1 gene encodes a diacylglycerol kinase enzyme that catalyzes the formation of phosphatidate from diacylglycerol. Unlike the diacylglycerol kinases from bacteria, plants, and animals, the yeast enzyme utilizes CTP, instead of ATP, as the phosphate donor in the reaction. Dgk1p contains a CTP transferase domain that is present in the SEC59-encoded dolichol kinase and CDS1-encoded CDP-diacylglycerol synthase enzymes. Deletion analysis showed that the CTP transferase domain was sufficient for diacylglycerol kinase activity. Point mutations (R76A, K77A, D177A, and G184A) of conserved residues within the CTP transferase domain caused a loss of diacylglycerol kinase activity. Analysis of DGK1 alleles showed that the in vivo functions of Dgk1p were specifically due to its diacylglycerol kinase activity. The DGK1-encoded enzyme had a pH optimum at 7.0-7.5, required Ca(2+) or Mg(2+) ions for activity, was potently inhibited by N-ethylmaleimide, and was labile at temperatures above 40 degrees C. The enzyme exhibited positive cooperative (Hill number = 2.5) kinetics with respect to diacylglycerol (apparent K(m) = 6.5 mol %) and saturation kinetics with respect to CTP (apparent K(m) = 0.3 mm). dCTP was both a substrate (apparent K(m) = 0.4 mm) and competitive inhibitor (apparent K(i) = 0.4 mm) of the enzyme. Diacylglycerol kinase activity was stimulated by major membrane phospholipids and was inhibited by CDP-diacylglycerol and sphingoid bases. << Less
J. Biol. Chem. 283:20443-20453(2008) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Enzymatic phosphorylation of dolichol in central nervous tissue.
Burton W.A., Scher M.G., Waechter C.J.
-
Properties of a dolichol phosphokinase activity associated with rat liver microsomes.
Rip J.W., Carroll K.K.
Rat liver microsomes show a capacity to synthesize [1-3H]dolichyl phosphate from [1-3H]-dolichol. Formation of [1-3H]dolichyl phosphate increased continuously over 15 min although the reaction rate was never completely linear. Product formation was directly proportional to microsomal protein conce ... >> More
Rat liver microsomes show a capacity to synthesize [1-3H]dolichyl phosphate from [1-3H]-dolichol. Formation of [1-3H]dolichyl phosphate increased continuously over 15 min although the reaction rate was never completely linear. Product formation was directly proportional to microsomal protein concentration between 1.1 mg/mL and the highest concentration tested, 5.5 mg/mL. The reaction rate was linear with respect to the dolichol content of the assay mixture to a saturation point (120 microM). An apparent Km of 50 microM was established for dolichol. The normal phosphate donor for the reaction is CTP and not ATP. The optimum concentration of CTP was 10 mM, and an apparent Km of 4 mM was calculated for this nucleoside triphosphate. The reaction was totally dependent on divalent metal ion, magnesium being more effective than calcium. The optimum concentration of magnesium ion and CTP were the same (10 mM), suggesting that MgCTP2-is utilized as the normal enzyme substrate. Activity measured in the absence of Triton X-100 was only 5% of the activity observed at the optimum (0.5% w/v) detergent concentration. The measurable levels of dolichol phosphokinase could be doubled by the inclusion of 10-15 mM NaF as phosphatase inhibitor. Optimal enzymatic activity was obtained between pH 7.0 and pH 7.5 and could be inhibited by EDTA. The sulfhydryl reagent DTT was slightly stimulatory while the product of the reaction, dolichyl phosphate, was noninhibitory at the highest concentration tested (13.8 microM). The second reaction product (CDP) inhibits the enzymatic phosphorylation of dolichol. << Less