Reaction participants Show >> << Hide
- Name help_outline guanosine 3'-diphosphate 5'-triphosphate Identifier CHEBI:142410 Charge -6 Formula C10H12N5O20P5 InChIKeyhelp_outline KCPMACXZAITQAX-UUOKFMHZSA-H SMILEShelp_outline C1(=O)NC(=NC2=C1N=CN2[C@@H]3O[C@H](COP(=O)(OP(=O)(OP(=O)([O-])[O-])[O-])[O-])[C@@H](OP(OP(O)(=O)[O-])(=O)[O-])[C@H]3O)N 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline guanosine 3',5'-bis(diphosphate) Identifier CHEBI:77828 Charge -5 Formula C10H12N5O17P4 InChIKeyhelp_outline BUFLLCUFNHESEH-UUOKFMHZSA-I SMILEShelp_outline Nc1nc2n(cnc2c(=O)[nH]1)[C@@H]1O[C@H](COP([O-])(=O)OP(O)([O-])=O)[C@@H](OP([O-])(=O)OP([O-])([O-])=O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:13073 | RHEA:13074 | RHEA:13075 | RHEA:13076 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Guanosine 5'-triphosphate, 3'-diphosphate 5'-phosphohydrolase. Purification and substrate specificity.
Hara A., Sy J.
The regulatory nucleotide guanosine 5'-diphosphate, 3'-diphosphate (ppGpp) and its precursor guanosine 5'-triphosphate, 3'-diphosphate (pppGpp) are accumulated during stringent response in bacterial cells. The enzyme pppGpp-5'-phosphohydrolase, which catalyzes the conversion of pppGpp to ppGpp, wa ... >> More
The regulatory nucleotide guanosine 5'-diphosphate, 3'-diphosphate (ppGpp) and its precursor guanosine 5'-triphosphate, 3'-diphosphate (pppGpp) are accumulated during stringent response in bacterial cells. The enzyme pppGpp-5'-phosphohydrolase, which catalyzes the conversion of pppGpp to ppGpp, was partially purified from Escherichia coli. It has Mr = 140,000 and an apparent Km of 0.11 mM for pppGpp. It requires Mg2+ and a monovalent cation. NH4+ is preferred over K+, while Na+ is inactive. The enzyme does not hydrolyze GTP, ATP, pppApp, or ppGpp. It is also not effectively inhibited by these nucleotides. pppGpp-5'-phosphohydrolase hydrolyzes the 3'-monophosphate analog pppGp equally well (apparent Km of 0.13 mM), yielding the recently identified MS III nucleotide (ppGp). pppGpp-5'-phosphohydrolase does not have RNA 5'-terminal gamma-phosphatase activity; however, 5'-terminal phosphates are released by pppGpp-5'-phosphohydrolase when the GTP-terminated RNA chains are first converted into oligonucleotides by RNase A treatment. pppGpp-5'-phosphohydrolase was found to actively hydrolyze the dinucleotide fragment pppGpNp but exhibited very low activity toward longer chain fragments. The 3'-unphosphorylated dinucleotide pppGpN was, however, not hydrolyzed. The ability of pppGpp-5'-phosphohydrolase to hydrolyze pppGpp, pppGp, and pppGpNp, but not pppG and pppGpN, indicates that pppGpp-5'-phosphohydrolase is rather nonspecific toward the 3'-OH substitutions of the substrates although a free, unsubstituted phosphate group at the 3'-OH position is essential. << Less
-
Intramolecular regulation of the opposing (p)ppGpp catalytic activities of Rel(Seq), the Rel/Spo enzyme from Streptococcus equisimilis.
Mechold U., Murphy H., Brown L., Cashel M.
Catalytic and regulatory domains of the Rel/Spo homolog of Streptococcus equisimilis affecting (p)ppGpp synthesis and degradation activities have been defined, and opposing activities of the purified protein and its fragments have been compared. Two major domains of the 739-residue Rel(Seq) protei ... >> More
Catalytic and regulatory domains of the Rel/Spo homolog of Streptococcus equisimilis affecting (p)ppGpp synthesis and degradation activities have been defined, and opposing activities of the purified protein and its fragments have been compared. Two major domains of the 739-residue Rel(Seq) protein are defined by limited proteolytic digestion. In vitro assays of the purified N-terminal half-protein reveal synthesis of (p)ppGpp by an ATP-GTP 3'-pyrophosphotransferase as well as an ability to degrade (p)ppGpp by a Mn(2+)-dependent 3'-pyrophosphohydrolase. Removal of the C-terminal half-protein has reciprocal regulatory effects on the activities of the N-terminal half-protein. Compared to the full-length protein, deletion activates (p)ppGpp synthesis specific activity about 12-fold and simultaneously inhibits (p)ppGpp degradation specific activity about 150-fold to shift the balance of the two activities in favor of synthesis. Cellular (p)ppGpp accumulation behavior is consistent with these changes. The bifunctional N-terminal half-protein can be further dissected into overlapping monofunctional subdomains, since purified peptides display either degradation activity (residues 1 to 224) or synthetic activity (residues 79 to 385) in vitro. These assignments can also apply to RelA and SpoT. The ability of Rel(Seq) to mediate (p)ppGpp accumulation during amino acid starvation in S. equisimilis is absent when the protein is expressed ectopically in Escherichia coli. Fusing the N-terminal half of Rel(Seq) with the C-terminal domain of RelA creates a chimeric protein that restores the stringent response in E. coli by inhibiting unregulated degradation and restoring regulated synthetic activity. Reciprocal intramolecular regulation of the dual activities may be a general intrinsic feature of Rel/Spo homolog proteins. << Less
J. Bacteriol. 184:2878-2888(2002) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Differential regulation of opposing RelMtb activities by the aminoacylation state of a tRNA.ribosome.mRNA.RelMtb complex.
Avarbock D., Avarbock A., Rubin H.
Rel(Mtb) of Mycobacterium tuberculosis is responsible for the intracellular regulation of (p)ppGpp and the consequent ability of the organism to survive long-term starvation, indicating a possible role in the pathogenesis of tuberculosis. Purified Rel(Mtb) is a dual-function enzyme carrying out AT ... >> More
Rel(Mtb) of Mycobacterium tuberculosis is responsible for the intracellular regulation of (p)ppGpp and the consequent ability of the organism to survive long-term starvation, indicating a possible role in the pathogenesis of tuberculosis. Purified Rel(Mtb) is a dual-function enzyme carrying out ATP: GTP/GDP/ITP 3'-pyrophosphoryltransferase and (p)ppGpp 3'-pyrophosphohydrolase reactions. Here we show that in the absence of biological regulators, Rel(Mtb) simultaneously catalyzes both transferase and hydrolysis at the maximal rate for each reaction, indicating the existence of two distinct active sites. The differential regulation of the opposing activities of Rel(Mtb) is dependent on the ratio of uncharged to charged tRNA and the association of Rel(Mtb) with a complex containing tRNA, ribosomes, and mRNA. A 20-fold increase in the k(cat) and a 4-fold decrease in K(ATP) and K(GTP) from basal levels for transferase activity occur when Rel(Mtb) binds to a complex containing uncharged tRNA, ribosomes, and mRNA (Rel(Mtb) activating complex or RAC). The k(cat) for hydrolysis, however, is reduced 2-fold and K(m) for pppGpp increased 2-fold from basal levels in the presence of the Rel(Mtb) activating complex. The addition of charged tRNA to this complex has the opposite effect by inhibiting transferase activity and activating hydrolysis activity. Differential control of Rel(Mtb) gives the Mtb ribosomal complex a new regulatory role in controlling cellular metabolism in response to stringent growth conditions that may be present in the dormant Mtb lesion. << Less
Biochemistry 39:11640-11648(2000) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.