Enzymes
UniProtKB help_outline | 2 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,116 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline vanillate Identifier CHEBI:16632 (Beilstein: 6504377) help_outline Charge -1 Formula C8H7O4 InChIKeyhelp_outline WKOLLVMJNQIZCI-UHFFFAOYSA-M SMILEShelp_outline COc1cc(ccc1O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 10 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 3,4-dihydroxybenzoate Identifier CHEBI:36241 Charge -1 Formula C7H5O4 InChIKeyhelp_outline YQUVCSBJEUQKSH-UHFFFAOYSA-M SMILEShelp_outline C(=O)(C1=CC(=C(C=C1)O)O)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 26 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline formaldehyde Identifier CHEBI:16842 (Beilstein: 1209228; CAS: 50-00-0) help_outline Charge 0 Formula CH2O InChIKeyhelp_outline WSFSSNUMVMOOMR-UHFFFAOYSA-N SMILEShelp_outline [H]C([H])=O 2D coordinates Mol file for the small molecule Search links Involved in 141 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,186 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:13021 | RHEA:13022 | RHEA:13023 | RHEA:13024 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuate.
Priefert H., Rabenhorst J., Steinbuechel A.
The gene loci vdh, vanA, and vanB, which are involved in the bioconversion of vanillin to protocatechuate by Pseudomonas sp. strain HR199 (DSM 7063), were identified as the structural genes of a novel vanillin dehydrogenase (vdh) and the two subunits of a vanillate demethylase (vanA and vanB), res ... >> More
The gene loci vdh, vanA, and vanB, which are involved in the bioconversion of vanillin to protocatechuate by Pseudomonas sp. strain HR199 (DSM 7063), were identified as the structural genes of a novel vanillin dehydrogenase (vdh) and the two subunits of a vanillate demethylase (vanA and vanB), respectively. These genes were localized on an EcoRI fragment (E230), which was cloned from a Pseudomonas sp. strain HR199 genomic library in the cosmid pVK100. The vdh gene was identified on a subfragment (HE35) of E230, and the vanA and vanB genes were localized on a different subfragment (H110) of E230. The nucleotide sequences of fragment HE35 and part of fragment H110 were determined, revealing open reading frames of 1062, 951, and 1446 bp, representing vanA, vanB, and vdh, respectively. The vdh gene was organized in one operon together with a fourth open reading frame (ORF2), of 735 bp, which was located upstream of vdh. The deduced amino acid sequences of vanA and vanB exhibited 78.8 and 62.1% amino acid identity, respectively, to the corresponding gene products from Pseudomonas sp. strain ATCC 19151 (F. Brunel and J. Davison, J. Bacteriol. 170:4924-4930, 1988). The deduced amino acid sequence of the vdh gene exhibited up to 35.3% amino acid identity to aldehyde dehydrogenases from different sources. The deduced amino acid sequence of ORF2 exhibited up to 28.4% amino acid identity to those of enoyl coenzyme A hydratases. Escherichia coli strains harboring fragment E230 cloned in pBluescript SK-converted vanillin to protocatechuate via vanillate, indicating the functional expression of vdh, vanA, and vanB in E. coli. High expression of vdh in E. coli was achieved with HE35 cloned in pBluescript SK-. The resulting recombinant strains converted vanillin to vanillate at a rate of up to 0.3 micromol per min per ml of culture. Transfer of vanA, vanB, and vdh to Alcaligenes eutrophus and to different Pseudomonas strains, which were unable to utilize vanillin or vanillate as carbon sources, respectively, conferred the ability to grow on these substrates to these bacteria. << Less
J. Bacteriol. 179:2595-2607(1997) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Cloning and sequencing of Pseudomonas genes encoding vanillate demethylase.
Brunel F., Davison J.
A 2,598-base-pair (bp) SalI-HincII DNA fragment has been cloned which codes for vanillate demethylase, the enzyme responsible for the demethylation of vanillate (3-methoxy-4-hydroxybenzoate) to protocatechuate (3,4-dihydroxybenzoate). Complementation and insertional inactivation experiments have s ... >> More
A 2,598-base-pair (bp) SalI-HincII DNA fragment has been cloned which codes for vanillate demethylase, the enzyme responsible for the demethylation of vanillate (3-methoxy-4-hydroxybenzoate) to protocatechuate (3,4-dihydroxybenzoate). Complementation and insertional inactivation experiments have shown that this fragment carries two genes (vanA and vanB) which are predominantly cotranscribed from a promoter upstream of vanA. Nucleotide sequencing of the SalI-HincII fragment confirmed the genetic data: two open reading frames of 987 and 942 bp were present in the transcribed orientation. These had a very high G + C content in the third base of each codon, which is characteristic of Pseudomonas chromosomal genes. Expression of the genes in Escherichia coli with the T7 RNA polymerase-promoter system gave rise to two polypeptides of 36 and 33 kilodaltons which could be identified by deletion analysis as the products of vanA and vanB, respectively. A search of the protein sequence data bank indicated that the vanB gene product was related to the ferredoxin family. << Less