Enzymes
UniProtKB help_outline | 1 proteins |
Reaction participants Show >> << Hide
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline N-formyl-L-kynurenine Identifier CHEBI:58629 Charge 0 Formula C11H12N2O4 InChIKeyhelp_outline BYHJHXPTQMMKCA-QMMMGPOBSA-N SMILEShelp_outline [NH3+][C@@H](CC(=O)c1ccccc1NC=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline formate Identifier CHEBI:15740 (Beilstein: 1901205; CAS: 71-47-6) help_outline Charge -1 Formula CHO2 InChIKeyhelp_outline BDAGIHXWWSANSR-UHFFFAOYSA-M SMILEShelp_outline [H]C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 97 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-kynurenine Identifier CHEBI:57959 Charge 0 Formula C10H12N2O3 InChIKeyhelp_outline YGPSJZOEDVAXAB-QMMMGPOBSA-N SMILEShelp_outline Nc1ccccc1C(=O)C[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 34 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:13009 | RHEA:13010 | RHEA:13011 | RHEA:13012 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Structures of bacterial kynurenine formamidase reveal a crowded binuclear zinc catalytic site primed to generate a potent nucleophile.
Diaz-Saez L., Srikannathasan V., Zoltner M., Hunter W.N.
Tryptophan is an important precursor for chemical entities that ultimately support the biosynthesis of key metabolites. The second stage of tryptophan catabolism is catalysed by kynurenine formamidase, an enzyme that is different between eukaryotes and prokaryotes. In the present study, we charact ... >> More
Tryptophan is an important precursor for chemical entities that ultimately support the biosynthesis of key metabolites. The second stage of tryptophan catabolism is catalysed by kynurenine formamidase, an enzyme that is different between eukaryotes and prokaryotes. In the present study, we characterize the catalytic properties and present the crystal structures of three bacterial kynurenine formamidases. The structures reveal a new amidase protein fold, a highly organized and distinctive binuclear Zn2+ catalytic centre in a confined, hydrophobic and relatively rigid active site. The structure of a complex with 2-aminoacetophenone delineates aspects of molecular recognition extending to the observation that the substrate itself may be conformationally restricted to assist binding in the confined space of the active site and for subsequent processing. The cations occupy a crowded environment, and, unlike most Zn2+-dependent enzymes, there is little scope to increase co-ordination number during catalysis. We propose that the presence of a bridging water/hydroxide ligand in conjunction with the placement of an active site histidine supports a distinctive amidation mechanism. << Less
-
Aerobic tryptophan degradation pathway in bacteria: novel kynurenine formamidase.
Kurnasov O., Jablonski L., Polanuyer B., Dorrestein P., Begley T., Osterman A.
While a variety of chemical transformations related to the aerobic degradation of L-tryptophan (kynurenine pathway), and most of the genes and corresponding enzymes involved therein have been predominantly characterized in eukaryotes, relatively little was known about this pathway in bacteria. Usi ... >> More
While a variety of chemical transformations related to the aerobic degradation of L-tryptophan (kynurenine pathway), and most of the genes and corresponding enzymes involved therein have been predominantly characterized in eukaryotes, relatively little was known about this pathway in bacteria. Using genome comparative analysis techniques we have predicted the existence of the three-step pathway of aerobic L-tryptophan degradation to anthranilate (anthranilate pathway) in several bacteria. Based on the chromosomal gene clustering analysis, we have identified a previously unknown gene encoding for kynurenine formamidase (EC 3.5.1.19) involved with the second step of the anthranilate pathway. This functional prediction was experimentally verified by cloning, expression and enzymatic characterization of recombinant kynurenine formamidase orthologs from Bacillus cereus, Pseudomonas aeruginosa and Ralstonia metallidurans. Experimental verification of the inferred anthranilate pathway was achieved by functional expression in Escherichia coli of the R. metallidurans putative kynBAU operon encoding three required enzymes: tryptophan 2,3-dioxygenase (gene kynA), kynurenine formamidase (gene kynB), and kynureninase (gene kynU). Our data provide the first experimental evidence of the connection between these genes (only one of which, kynU, was previously characterized) and L-tryptophan aerobic degradation pathway in bacteria. << Less
FEMS Microbiol. Lett. 227:219-227(2003) [PubMed] [EuropePMC]
-
Identification of formyl kynurenine formamidase and kynurenine aminotransferase from Saccharomyces cerevisiae using crystallographic, bioinformatic and biochemical evidence.
Wogulis M., Chew E.R., Donohoue P.D., Wilson D.K.
The essential enzymatic cofactor NAD+ can be synthesized in many eukaryotes, including Saccharomyces cerevisiae and mammals, using tryptophan as a starting material. Metabolites along the pathway or on branches have important biological functions. For example, kynurenic acid can act as an NMDA ant ... >> More
The essential enzymatic cofactor NAD+ can be synthesized in many eukaryotes, including Saccharomyces cerevisiae and mammals, using tryptophan as a starting material. Metabolites along the pathway or on branches have important biological functions. For example, kynurenic acid can act as an NMDA antagonist, thereby functioning as a neuroprotectant in a wide range of pathological states. N-Formyl kynurenine formamidase (FKF) catalyzes the second step of the NAD+ biosynthetic pathway by hydrolyzing N-formyl kynurenine to produce kynurenine and formate. The S. cerevisiae FKF had been reported to be a pyridoxal phosphate-dependent enzyme encoded by BNA3. We used combined crystallographic, bioinformatic and biochemical methods to demonstrate that Bna3p is not an FKF but rather is most likely the yeast kynurenine aminotransferase, which converts kynurenine to kynurenic acid. Additionally, we identify YDR428C, a yeast ORF coding for an alpha/beta hydrolase with no previously assigned function, as the FKF. We predicted its function based on our interpretation of prior structural genomics results and on its sequence homology to known FKFs. Biochemical, bioinformatics, genetic and in vivo metabolite data derived from LC-MS demonstrate that YDR428C, which we have designated BNA7, is the yeast FKF. << Less