Reaction participants Show >> << Hide
- Name help_outline an acetyl ester Identifier CHEBI:47622 Charge 0 Formula C2H3O2R SMILEShelp_outline CC(=O)O[*] 2D coordinates Mol file for the small molecule Search links Involved in 106 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline acetate Identifier CHEBI:30089 (Beilstein: 1901470; CAS: 71-50-1) help_outline Charge -1 Formula C2H3O2 InChIKeyhelp_outline QTBSBXVTEAMEQO-UHFFFAOYSA-M SMILEShelp_outline CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 174 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline an aliphatic alcohol Identifier CHEBI:2571 Charge 0 Formula HOR SMILEShelp_outline O* 2D coordinates Mol file for the small molecule Search links Involved in 214 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:12957 | RHEA:12958 | RHEA:12959 | RHEA:12960 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
More general form(s) of this reaction
Publications
-
Expression and characterization of the protein Rv1399c from Mycobacterium tuberculosis. A novel carboxyl esterase structurally related to the HSL family.
Canaan S., Maurin D., Chahinian H., Pouilly B., Durousseau C., Frassinetti F., Scappuccini-Calvo L., Cambillau C., Bourne Y.
The Mycobacterium tuberculosis genome contains an unusually high number of proteins involved in the metabolism of lipids belonging to the Lip family, including various nonlipolytic and lipolytic hydrolases. Driven by a structural genomic approach, we have biochemically characterized the Rv1399c ge ... >> More
The Mycobacterium tuberculosis genome contains an unusually high number of proteins involved in the metabolism of lipids belonging to the Lip family, including various nonlipolytic and lipolytic hydrolases. Driven by a structural genomic approach, we have biochemically characterized the Rv1399c gene product, LipH, previously annotated as a putative lipase. Rv1399c was overexpressed in E. coli as inclusion bodies and refolded. Rv1399c efficiently hydrolyzes soluble triacylglycerols and vinyl esters. It is inactive against emulsified substrate and its catalytic activity is strongly inhibited by the diethyl paranitrophenyl phosphate (E600). These kinetic behaviors unambiguously classify Rv1399c as a nonlipolytic rather than a lipolytic hydrolase. Sequence alignment reveals that this enzyme belongs to the alpha/beta hydrolase fold family and shares 30-40% amino acid sequence identity with members of the hormone-sensitive lipase subfamily. A model of Rv1399c derived from homologous three-dimensional structures reveals a canonical catalytic triad (Ser162, His290 and Asp260) located at the bottom of a solvent accessible pocket lined by neutral or charged residues. Based on this model, kinetic data of the Arg213Ala mutant partially explain the role of the guanidinium moiety, located close to His290, to confer an unusual low pH shift of the catalytic histidine in the wild type enzyme. Overall, these data identify Rv1399c as a new nonlipolytic hydrolase from M. tuberculosis and we thus propose to reannotate its gene product as NLH-H. << Less
Eur. J. Biochem. 271:3953-3961(2004) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Characterization and function of Mycobacterium tuberculosis H37Rv Lipase Rv1076 (LipU).
Li C., Li Q., Zhang Y., Gong Z., Ren S., Li P., Xie J.
Lipids and lipases/esterases are essential for Mycobacterium tuberculosis (Mtb) survival and persistence, even virulence. Mycobacterium tuberculosis H37Rv Rv1076 (LipU), a member of lipase family, is homologous to the human Hormone Sensitive Lipase (HSL) based on the presence of conserved motif 'G ... >> More
Lipids and lipases/esterases are essential for Mycobacterium tuberculosis (Mtb) survival and persistence, even virulence. Mycobacterium tuberculosis H37Rv Rv1076 (LipU), a member of lipase family, is homologous to the human Hormone Sensitive Lipase (HSL) based on the presence of conserved motif 'GXSXG'. To define the enzymatic characteristics of rv1076, the gene was cloned, and expressed in Escherichia coli. The protein was purified for enzymatic characterization. LipU showed high specific activity for the hydrolysis of short carbon chain substrates with optimal activity at 40°C/pH 8.0 and stability at low temperature and near-neutral pH. The specific activity, Km and Vmax of LipU was calculated to 176.7U/mg, 1.73μM and 62.24μM/min respectively. Ionic detergents can inhibit its activity. The active-site residues of LipU were determined to be Ser140, Asp244 and His269 by site-directed mutagenesis. The upregulation of Mycobacterium tuberculosis rv1076 under nutritive stress implicates a role in starvation. << Less
Microbiol. Res. 196:7-16(2017) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Mycobacterium tuberculosis rv1400c encodes functional lipase/esterase.
Lin Y., Li Q., Xie L., Xie J.
Lipases catalyze the hydrolysis of triglycerides (TAG). Open reading frames (ORF) predicted to encode enzymes involved in fatty acids breakdown are abundant in Mycobacterium tuberculosis genome. To define the function of M. tuberculosis rv1400c (LipI), a putative Hormone Sensitive Lipase (HSL) sub ... >> More
Lipases catalyze the hydrolysis of triglycerides (TAG). Open reading frames (ORF) predicted to encode enzymes involved in fatty acids breakdown are abundant in Mycobacterium tuberculosis genome. To define the function of M. tuberculosis rv1400c (LipI), a putative Hormone Sensitive Lipase (HSL) subfamily ORF, the rv1400c was cloned, expressed and purified in Escherichia coli as fusion protein. The purified LipI preferred short carbon chain substrates with an optimal activity at 37 °C/pH 8.0 and stable between pH 6.0 to 9.0. Its specific activity was calculated to 35.71 U/mg with pNP-butyrate as a preferred substrate. SDS, CTAB and Zn<sup>2+</sup> can inhibit this enzyme. The conserved residues Ser165 and His291 were shown to be important for the catalysis activity of Rv1400c by site-directed mutagenesis. The biochemical and genetical data showed M. tuberculosis LipI might be a good candidate catalyst for polyunsaturated fatty acids. << Less
Protein Expr. Purif. 129:143-149(2017) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Serum esterases. I. Two types of esterase (A and B) hydrolysing p-nitrophenyl acetate, propionate and butyrate, and a method for their determination.
ALDRIDGE W.N.
-
Biochemical and structural characterization of TesA, a major thioesterase required for outer-envelope lipid biosynthesis in Mycobacterium tuberculosis.
Nguyen P.C., Nguyen V.S., Martin B.P., Fourquet P., Camoin L., Spilling C.D., Cavalier J.F., Cambillau C., Canaan S.
With the high number of patients infected by tuberculosis and the sharp increase of drug-resistant tuberculosis cases, developing new drugs to fight this disease has become increasingly urgent. In this context, analogs of the naturally occurring enolphosphates Cyclipostins and Cyclophostin (CyC an ... >> More
With the high number of patients infected by tuberculosis and the sharp increase of drug-resistant tuberculosis cases, developing new drugs to fight this disease has become increasingly urgent. In this context, analogs of the naturally occurring enolphosphates Cyclipostins and Cyclophostin (CyC analogs) offer new therapeutic opportunities. The CyC analogs display potent activity both in vitro and in infected macrophages against several pathogenic mycobacteria including Mycobacterium tuberculosis and Mycobacterium abscessus. Interestingly, these CyC inhibitors target several enzymes with active-site serine or cysteine residues that play key roles in mycobacterial lipid and cell wall metabolism. Among them, TesA, a putative thioesterase involved in the synthesis of phthiocerol dimycocerosates (PDIMs) and phenolic glycolipids (PGLs), has been identified. These two lipids (PDIM and PGL) are non-covalently bound to the outer cell wall in several human pathogenic mycobacteria and are important virulence factors. Herein, we used biochemical and structural approaches to validate TesA as an effective pharmacological target of the CyC analogs. We confirmed both thioesterase and esterase activities of TesA, and showed that the most active inhibitor CyC<sub>17</sub> binds covalently to the catalytic Ser104 residue leading to a total loss of enzyme activity. These data were supported by the X-ray structure, obtained at a 2.6-Å resolution, of a complex in which CyC<sub>17</sub> is bound to TesA. Our study provides evidence that CyC<sub>17</sub> inhibits the activity of TesA, thus paving the way to a new strategy for impairing the PDIM and PGL biosynthesis, potentially decreasing the virulence of associated mycobacterial species. << Less
J. Mol. Biol. 430:5120-5136(2018) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Characterization of LipN (Rv2970c) of Mycobacterium tuberculosis H37Rv and its probable role in xenobiotic degradation.
Jadeja D., Dogra N., Arya S., Singh G., Singh G., Kaur J.
LipN (Rv2970c) belongs to the Lip family of M. tuberculosis H37Rv and is homologous to the human Hormone Sensitive Lipase. The enzyme demonstrated preference for short carbon chain substrates with optimal activity at 45°C/pH 8.0 and stability between pH 6.0-9.0. The specific activity of the enzyme ... >> More
LipN (Rv2970c) belongs to the Lip family of M. tuberculosis H37Rv and is homologous to the human Hormone Sensitive Lipase. The enzyme demonstrated preference for short carbon chain substrates with optimal activity at 45°C/pH 8.0 and stability between pH 6.0-9.0. The specific activity of the enzyme was 217 U/mg protein with pNP-butyrate as substrate. It hydrolyzed tributyrin to di- and monobutyrin. The active-site residues of the enzyme were confirmed to be Ser216, Asp316, and His346. Tetrahydrolipstatin, RHC-80267 and N-bromosuccinimide inhibited LipN enzyme activity completely. Interestingly, Trp145, a non active-site residue, demonstrated functional role to retain enzyme activity. The enzyme was localized in cytosolic fraction of M. tuberculosis H37Rv. The enzyme was able to synthesize ester of butyric acid, methyl butyrate, in presence of methanol. LipN was able to hydrolyze 4-hydroxyphenylacetate to hydroquinone. The gene was not expressed in in-vitro growth conditions while the expression of rv2970c gene was observed post 6h of macrophage infection by M. tuberculosis H37Ra. Under individual in-vitro stress conditions, the gene was expressed during acidic stress condition only. These findings suggested that LipN is a cytosolic, acid inducible carboxylesterase with no positional specificity in demonstrating activity with short carbon chain substrates. It requires Trp145, a non active site residue, for it's enzyme activity. << Less
J. Cell. Biochem. 117:390-401(2016) [PubMed] [EuropePMC]
This publication is cited by 9 other entries.
-
Identification and characterization of lipase activity and immunogenicity of LipL from Mycobacterium tuberculosis.
Cao J., Dang G., Li H., Li T., Yue Z., Li N., Liu Y., Liu S., Chen L.
Lipids and lipid-metabolizing esterases/lipases are highly important for the mycobacterial life cycle and, possibly, for mycobacterial virulence. In this study, we expressed 10 members of the Lip family of Mycobacterium tuberculosis. Among the 10 proteins, LipL displayed a significantly high enzym ... >> More
Lipids and lipid-metabolizing esterases/lipases are highly important for the mycobacterial life cycle and, possibly, for mycobacterial virulence. In this study, we expressed 10 members of the Lip family of Mycobacterium tuberculosis. Among the 10 proteins, LipL displayed a significantly high enzymatic activity for the hydrolysis of long-chain lipids. The optimal temperature for the lipase activity of LipL was demonstrated to be 37°C, and the optimal pH was 8.0. The lipase active center was not the conserved motif G-x-S-x-G, but rather the S-x-x-K and GGG motifs, and the key catalytic amino acid residues were identified as G50, S88, and K91, as demonstrated through site-directed mutagenesis experiments. A three-dimensional modeling structure of LipL was constructed, which showed that the GGG motif was located in the surface of a pocket structure. Furthermore, the subcellular localization of LipL was demonstrated to be on the mycobacterial surface by Western blot analysis. Our results revealed that the LipL protein could induce a strong humoral immune response in humans and activate a CD8+ T cell-mediated response in mice. Overall, our study identified and characterized a novel lipase denoted LipL from M. tuberculosis, and demonstrated that LipL functions as an immunogen that activates both humoral and cell-mediated responses. << Less
PLoS ONE 10:E0138151-E0138151(2015) [PubMed] [EuropePMC]
This publication is cited by 8 other entries.
-
Novel family of carbohydrate esterases, based on identification of the Hypocrea jecorina acetyl esterase gene.
Li X.L., Skory C.D., Cotta M.A., Puchart V., Biely P.
Plant cell walls have been shown to contain acetyl groups in hemicelluloses and pectin. The gene aes1, encoding the acetyl esterase (Aes1) of Hypocrea jecorina, was identified by amino-terminal sequencing, peptide mass spectrometry, and genomic sequence analyses. The coded polypeptide had 348 amin ... >> More
Plant cell walls have been shown to contain acetyl groups in hemicelluloses and pectin. The gene aes1, encoding the acetyl esterase (Aes1) of Hypocrea jecorina, was identified by amino-terminal sequencing, peptide mass spectrometry, and genomic sequence analyses. The coded polypeptide had 348 amino acid residues with the first 19 serving as a secretion signal peptide. The calculated molecular mass and isoelectric point of the secreted enzyme were 37,088 Da and pH 5.89, respectively. No significant homology was found between the predicated Aes1 and carbohydrate esterases of known families, but putative aes1 orthologs were found in genomes of many fungi and bacteria that produce cell wall-degrading enzymes. The aes1 transcript levels were high when the fungal cells were induced with sophorose, cellulose, oat spelt xylan, lactose, and arabinose. The recombinant Aes1 produced by H. jecorina transformed with aes1 under the cellobiohydrolase I promoter displayed properties similar to those reported for the native enzyme. The enzyme hydrolyzed acetate ester bond specifically. Using 4-nitrophenyl acetate as substrate, the activity of the recombinant enzyme was enhanced by D-xylose, D-glucose, cellobiose, D-galactose, and xylooligosaccharides but not by arabinose, mannose, or lactose. With the use of 4-nitrophenyl-beta-D-xylopyranoside monoacetate as substrate in a beta-xylosidase-coupled assay, Aes1 hydrolyzed positions 3 and 4 with the same efficiency while the H. jecorina acetylxylan esterase 1 exclusively deacetylated the position 2 acetyl group. Aes1 was capable of transacetylating methylxyloside in aqueous solution. The data presented demonstrate that Aes1 and other homologous microbial proteins may represent a new family of esterases for lignocellulose biodegradation. << Less
Appl. Environ. Microbiol. 74:7482-7489(2008) [PubMed] [EuropePMC]
-
Molecular characterization of human ABHD2 as TAG lipase and ester hydrolase.
M N.K., V B S C T., G K V., B C.S., Guntupalli S., J S B.
Alterations in lipid metabolism have been progressively documented as a characteristic property of cancer cells. Though, human ABHD2 gene was found to be highly expressed in breast and lung cancers, its biochemical functionality is yet uncharacterized. In the present study we report, human ABHD2 a ... >> More
Alterations in lipid metabolism have been progressively documented as a characteristic property of cancer cells. Though, human ABHD2 gene was found to be highly expressed in breast and lung cancers, its biochemical functionality is yet uncharacterized. In the present study we report, human ABHD2 as triacylglycerol (TAG) lipase along with ester hydrolysing capacity. Sequence analysis of ABHD2 revealed the presence of conserved motifs G(205)XS(207)XG(209) and H(120)XXXXD(125) Phylogenetic analysis showed homology to known lipases, Drosophila melanogaster CG3488. To evaluate the biochemical role, recombinant ABHD2 was expressed in Saccharomyces cerevisiae using pYES2/CT vector and His-tag purified protein showed TAG lipase activity. Ester hydrolase activity was confirmed with pNP acetate, butyrate and palmitate substrates respectively. Further, the ABHD2 homology model was built and the modelled protein was analysed based on the RMSD and root mean square fluctuation (RMSF) of the 100 ns simulation trajectory. Docking the acetate, butyrate and palmitate ligands with the model confirmed covalent binding of ligands with the Ser(207) of the GXSXG motif. The model was validated with a mutant ABHD2 developed with alanine in place of Ser(207) and the docking studies revealed loss of interaction between selected ligands and the mutant protein active site. Based on the above results, human ABHD2 was identified as a novel TAG lipase and ester hydrolase. << Less
Biosci. Rep. 36:0-0(2016) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Characterization of a novel esterase Rv0045c from Mycobacterium tuberculosis.
Guo J., Zheng X., Xu L., Liu Z., Xu K., Li S., Wen T., Liu S., Pang H.
<h4>Background</h4>It was proposed that there are at least 250 enzymes in M. tuberculosis involved in lipid metabolism. Rv0045c was predicted to be a hydrolase by amino acid sequence similarity, although its precise biochemical characterization and function remained to be defined.<h4>Methodology/p ... >> More
<h4>Background</h4>It was proposed that there are at least 250 enzymes in M. tuberculosis involved in lipid metabolism. Rv0045c was predicted to be a hydrolase by amino acid sequence similarity, although its precise biochemical characterization and function remained to be defined.<h4>Methodology/principal findings</h4>We expressed the Rv0045c protein to high levels in E. coli and purified the protein to high purity. We confirmed that the prepared protein was the Rv0045c protein by mass spectrometry analysis. Circular dichroism spectroscopy analysis showed that the protein possessed abundant β-sheet secondary structure, and confirmed that its conformation was stable in the range pH 6.0-10.0 and at temperatures ≤ 40 °C. Enzyme activity analysis indicated that the Rv0045c protein could efficiently hydrolyze short chain p-nitrophenyl esters (C₂-C₈), and its suitable substrate was p-nitrophenyl caproate (C₆) with optimal catalytic conditions of 39 °C and pH 8.0.<h4>Conclusions/significance</h4>Our results demonstrated that the Rv0045c protein is a novel esterase. These experiments will be helpful in understanding ester/lipid metabolism related to M. tuberculosis. << Less
PLoS ONE 5:e13143-e13143(2010) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Characterization of a novel exported esterase Rv3036c from Mycobacterium tuberculosis.
Chen L., Dang G., Deng X., Cao J., Yu S., Wu D., Pang H., Liu S.
Mycobacterium tuberculosis possesses an unusually high number of genes involved in the metabolism of lipids. Driven by a newly described esterase motif SXXK in the amino acid sequence and a predicted signal peptide, the gene rv3036c from M. tuberculosis was cloned and characterized biochemically. ... >> More
Mycobacterium tuberculosis possesses an unusually high number of genes involved in the metabolism of lipids. Driven by a newly described esterase motif SXXK in the amino acid sequence and a predicted signal peptide, the gene rv3036c from M. tuberculosis was cloned and characterized biochemically. Rv3036c efficiently hydrolyzes soluble p-nitrophenyl esters but not emulsified lipid. The highest activity of this enzyme was observed when p-nitrophenyl acetate (C2) was used as the substrate. Based on the activities, Rv3036c was classified as a nonlipolytic hydrolase. The results of immunoreactivity studies on the subcellular mycobacterial fractions suggested that the enzyme was present in the cell wall and cell membrane in mycobacteria. In summary, Rv3036c was characterized as a novel cell wall-anchored esterase from M. tuberculosis. << Less
Protein Expr. Purif. 104:50-56(2014) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Saccharomyces cerevisiae lipid droplet associated enzyme Ypr147cp shows both TAG lipase and ester hydrolase activities.
Naresh Kumar M., Thunuguntla V.B.S.C., Chandra Sekhar B., Bondili J.S.
Saccharomyces cerevisiae Ypr147cp was found localized to lipid droplets but the physiological role of Ypr147cp remains unknown. Sequence analysis of Ypr147cp revealed an α/β hydrolase domain along with the conserved GXSXG lipase motif. Recombinant Ypr147cp showed both triacylglycerol lipase and es ... >> More
Saccharomyces cerevisiae Ypr147cp was found localized to lipid droplets but the physiological role of Ypr147cp remains unknown. Sequence analysis of Ypr147cp revealed an α/β hydrolase domain along with the conserved GXSXG lipase motif. Recombinant Ypr147cp showed both triacylglycerol lipase and ester hydrolase activities. Knock out of YPR147C led to accumulation of TAG in ypr147cΔ when compared to wild type (WT). In addition, transmission electron microscopic analysis of ypr147cΔ cells revealed a greater number of lipid bodies, justifying the increase in TAG content, and the phenotype was rescued upon overexpression of YPR147C in ypr147cΔ. Moreover, the lipid profiling confirmed the accumulation of fatty acids derived from neutral and phospholipids in ypr147cΔ cells. Based on these results, Ypr147cp is identified as a lipid droplet associated triacylglycerol lipase along with an ester hydrolyzing capacity. << Less
J. Gen. Appl. Microbiol. 64:76-83(2018) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Fractionation of C-esterase from the hog's kidney extract.
Bergmann F., Rimon S.
-
Distinct roles of carbohydrate esterase family CE16 acetyl esterases and polymer-acting acetyl xylan esterases in xylan deacetylation.
Koutaniemi S., van Gool M.P., Juvonen M., Jokela J., Hinz S.W., Schols H.A., Tenkanen M.
Mass spectrometric analysis was used to compare the roles of two acetyl esterases (AE, carbohydrate esterase family CE16) and three acetyl xylan esterases (AXE, families CE1 and CE5) in deacetylation of natural substrates, neutral (linear) and 4-O-methyl glucuronic acid (MeGlcA) substituted xylool ... >> More
Mass spectrometric analysis was used to compare the roles of two acetyl esterases (AE, carbohydrate esterase family CE16) and three acetyl xylan esterases (AXE, families CE1 and CE5) in deacetylation of natural substrates, neutral (linear) and 4-O-methyl glucuronic acid (MeGlcA) substituted xylooligosaccharides (XOS). AEs were similarly restricted in their action and apparently removed in most cases only one acetyl group from the non-reducing end of XOS, acting as exo-deacetylases. In contrast, AXEs completely deacetylated longer neutral XOS but had difficulties with the shorter ones. Complete deacetylation of neutral XOS was obtained after the combined action of AEs and AXEs. MeGlcA substituents partially restricted the action of both types of esterases and the remaining acidic XOS were mainly substituted with one MeGlcA and one acetyl group, supposedly on the same xylopyranosyl residue. These resisting structures were degraded to great extent only after inclusion of α-glucuronidase, which acted with the esterases in a synergistic manner. When used together with xylan backbone degrading endoxylanase and β-xylosidase, both AE and AXE enhanced the hydrolysis of complex XOS equally. << Less
Comments
Cited by: "An acetyl esterase of Trichoderma reesei and its role in the hydrolysis of acetyl xylans." Poutanen K., Sundberg M. Appl. Microbiol. Biotechnol. 28:419-424(1987)