Reaction participants Show >> << Hide
- Name help_outline a 1-acyl-sn-glycero-3-phosphocholine Identifier CHEBI:58168 Charge 0 Formula C9H19NO7PR SMILEShelp_outline C[N+](C)(C)CCOP([O-])(=O)OC[C@H](O)COC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 218 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline an acyl-CoA Identifier CHEBI:58342 Charge -4 Formula C22H31N7O17P3SR SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 2,045 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a 1,2-diacyl-sn-glycero-3-phosphocholine Identifier CHEBI:57643 Charge 0 Formula C10H18NO8PR2 SMILEShelp_outline [C@](COC(=O)*)(OC(=O)*)([H])COP(OCC[N+](C)(C)C)([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 324 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:12937 | RHEA:12938 | RHEA:12939 | RHEA:12940 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
Reactome help_outline |
Related reactions help_outline
Specific form(s) of this reaction
- RHEA:37870
- RHEA:37866
- RHEA:37862
- RHEA:37858
- RHEA:37806
- RHEA:37710
- RHEA:37706
- RHEA:37566
- RHEA:37562
- RHEA:37518
- RHEA:37478
- RHEA:35990
- RHEA:33362
Publications
-
Identification and characterization of a major liver lysophosphatidylcholine acyltransferase.
Zhao Y., Chen Y.Q., Bonacci T.M., Bredt D.S., Li S., Bensch W.R., Moller D.E., Kowala M., Konrad R.J., Cao G.
Phosphatidylcholine (PC) is synthesized through the Kennedy pathway, but more than 50% of PC is remodeled through the Lands cycle, i.e. the deacylation and reacylation of PC to attain the final and proper fatty acids within PC. The reacylation step is catalyzed by lysophosphatidylcholine acyltrans ... >> More
Phosphatidylcholine (PC) is synthesized through the Kennedy pathway, but more than 50% of PC is remodeled through the Lands cycle, i.e. the deacylation and reacylation of PC to attain the final and proper fatty acids within PC. The reacylation step is catalyzed by lysophosphatidylcholine acyltransferase (LPCAT), and we report here the identification of a novel LPCAT, which we named LPCAT3. LPCAT3 belongs to the membrane-bound O-acyltransferase (MBOAT) family and encodes a protein of 487 amino acids with a calculated molecular mass of 56 kDa. Membranes from HEK293 cells overexpressing LPCAT3 showed significantly increased LPCAT activity as assessed by thin layer chromatography analysis with substrate preference toward unsaturated fatty acids. LPCAT3 is localized within the endoplasmic reticulum and is primarily expressed in metabolic tissues including liver, adipose, and pancreas. In a human hepatoma Huh7 cells, RNA interference-mediated knockdown of LPCAT3 resulted in virtually complete loss of membrane LPCAT activity, suggesting that LPCAT3 is primarily responsible for hepatic LPCAT activity. Furthermore, peroxisome proliferator-activated receptor alpha agonists dose-dependently regulated LPCAT3 in liver in a peroxisome proliferator-activated receptor alpha-dependent fashion, implicating a role of LPCAT3 in lipid homeostasis. Our studies identify a long-sought enzyme that plays a critical role in PC remodeling in metabolic tissues and provide an invaluable tool for future investigations on how PC remodeling may potentially impact glucose and lipid homeostasis. << Less
J. Biol. Chem. 283:8258-8265(2008) [PubMed] [EuropePMC]
This publication is cited by 13 other entries.
-
Lysophospholipid acyltransferases and arachidonate recycling in human neutrophils.
Gijon M.A., Riekhof W.R., Zarini S., Murphy R.C., Voelker D.R.
The cycle of deacylation and reacylation of phospholipids plays a critical role in regulating availability of arachidonic acid for eicosanoid production. The major yeast lysophospholipid acyltransferase, Ale1p, is related to mammalian membrane-bound O-acyltransferase (MBOAT) proteins. We expressed ... >> More
The cycle of deacylation and reacylation of phospholipids plays a critical role in regulating availability of arachidonic acid for eicosanoid production. The major yeast lysophospholipid acyltransferase, Ale1p, is related to mammalian membrane-bound O-acyltransferase (MBOAT) proteins. We expressed four human MBOATs in yeast strains lacking Ale1p and studied their acyl-CoA and lysophospholipid specificities using novel mass spectrometry-based enzyme assays. MBOAT1 is a lysophosphatidylserine (lyso-PS) acyltransferase with preference for oleoyl-CoA. MBOAT2 also prefers oleoyl-CoA, using lysophosphatidic acid and lysophosphatidylethanolamine as acyl acceptors. MBOAT5 prefers lysophosphatidylcholine and lyso-PS to incorporate linoleoyl and arachidonoyl chains. MBOAT7 is a lysophosphatidylinositol acyltransferase with remarkable specificity for arachidonoyl-CoA. MBOAT5 and MBOAT7 are particularly susceptible to inhibition by thimerosal. Human neutrophils express mRNA for these four enzymes, and neutrophil microsomes incorporate arachidonoyl chains into phosphatidylinositol, phosphatidylcholine, PS, and phosphatidylethanolamine in a thimerosal-sensitive manner. These results strongly implicate MBOAT5 and MBOAT7 in arachidonate recycling, thus regulating free arachidonic acid levels and leukotriene synthesis in neutrophils. << Less
J. Biol. Chem. 283:30235-30245(2008) [PubMed] [EuropePMC]
This publication is cited by 26 other entries.