Reaction participants Show >> << Hide
- Name help_outline glycine Identifier CHEBI:57305 Charge 0 Formula C2H5NO2 InChIKeyhelp_outline DHMQDGOQFOQNFH-UHFFFAOYSA-N SMILEShelp_outline [NH3+]CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 142 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline succinyl-CoA Identifier CHEBI:57292 Charge -5 Formula C25H35N7O19P3S InChIKeyhelp_outline VNOYUJKHFWYWIR-ITIYDSSPSA-I SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 44 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 5-aminolevulinate Identifier CHEBI:356416 Charge 0 Formula C5H9NO3 InChIKeyhelp_outline ZGXJTSGNIOSYLO-UHFFFAOYSA-N SMILEShelp_outline [NH3+]CC(=O)CCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (Beilstein: 1900390; CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 997 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:12921 | RHEA:12922 | RHEA:12923 | RHEA:12924 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
Reactome help_outline |
Publications
-
Studies on delta-aminolevulinic acid synthase of Rhodopseudomonas spheroides. Reversibility of the reaction, kinetic, spectral, and other studies related to the mechanism of action.
Nandi D.L.
-
Lysine-313 of 5-aminolevulinate synthase acts as a general base during formation of the quinonoid reaction intermediates.
Hunter G.A., Ferreira G.C.
5-Aminolevulinate synthase catalyzes the condensation of glycine and succinyl-CoA to form CoA, carbon dioxide, and 5-aminolevulinate. This represents the first committed step of heme biosynthesis in animals and some bacteria. Lysine 313 (K313) of mature murine erythroid 5-aminolevulinate synthase ... >> More
5-Aminolevulinate synthase catalyzes the condensation of glycine and succinyl-CoA to form CoA, carbon dioxide, and 5-aminolevulinate. This represents the first committed step of heme biosynthesis in animals and some bacteria. Lysine 313 (K313) of mature murine erythroid 5-aminolevulinate synthase forms a Schiff base linkage to the pyridoxal 5'-phosphate cofactor. In the presence of glycine and succinyl-CoA, a quinonoid intermediate absorption is transiently observed in the visible spectrum of purified murine erythroid ALAS. Mutant enzymes with K313 replaced by glycine, histidine, or arginine exhibit no spectral evidence of quinonoid intermediate formation in the presence of glycine and succinyl-CoA. The wild-type 5-aminolevulinate synthase additionally forms a stable quinonoid intermediate in the presence of the product, 5-aminolevulinate. Only conservative mutation of K313 to histidine or arginine produces a variant that forms a quinonoid intermediate with 5-aminolevulinate. The quinonoid intermediate absorption of these mutants is markedly less than that of the wild-type enzyme, however. Whereas the wild-type enzyme catalyzes loss of tritium from [2-3H2]-glycine, mutation of K313 to glycine results in loss of this activity. Titration of the quinonoid intermediate formed upon binding of 5-aminolevulinate to the wild-type enzyme indicated that the quinonoid intermediate forms by transfer of a single proton with a pK of 8.1 +/-0.1. Conservative mutation of K313 to histidine raises this value to 8.6 +/-0.1. We propose that K313 acts as a general base catalyst to effect quinonoid intermediate formation during the 5-aminolevulinate synthase catalytic cycle. << Less
-
The major splice variant of human 5-aminolevulinate synthase-2 contributes significantly to erythroid heme biosynthesis.
Cox T.C., Sadlon T.J., Schwarz Q.P., Matthews C.S., Wise P.D., Cox L.L., Bottomley S.S., May B.K.
The initial step of the heme biosynthetic pathway in erythroid cells is catalyzed by an erythroid-specific isoform of 5-aminolevulinate synthase-2 (ALAS2). Previously, an alternatively spliced mRNA isoform of ALAS2 was identified although the functional significance of the encoded protein was unkn ... >> More
The initial step of the heme biosynthetic pathway in erythroid cells is catalyzed by an erythroid-specific isoform of 5-aminolevulinate synthase-2 (ALAS2). Previously, an alternatively spliced mRNA isoform of ALAS2 was identified although the functional significance of the encoded protein was unknown. We sought to characterize the contribution of this ALAS2 isoform to overall erythroid heme biosynthesis. Here, we report the identification of three novel ALAS2 mRNA splice isoforms in addition to the previously described isoform lacking exon 4-derived sequence. Quantitation of these mRNAs using ribonuclease protection experiments revealed that the isoform without exon 4-derived sequence represents approximately 35-45% of total ALAS2 mRNA while the newly identified transcripts together represent approximately 15%. Despite the significant amounts of these three new transcripts, their features indicate that they are unlikely to substantially contribute to overall mitochondrial ALAS2 activity. In contrast, in vitro studies show that the major splice variant (lacking exon 4-encoded sequence) produces a functional enzyme, albeit with slightly reduced activity and with affinity for the ATP-specific, beta subunit of succinyl CoA synthase, comparable to that of mature ALAS2. It was also established that the first 49 amino acids of the ALAS2 pre-protein are necessary and sufficient for translocation across the mitochondrial inner membrane and that this process is not affected by the absence of exon 4-encoded sequence. We conclude that the major splice isoform of ALAS2 is functional in vivo and could significantly contribute to erythroid heme biosynthesis and hemoglobin formation. << Less
Int. J. Biochem. Cell Biol. 36:281-295(2004) [PubMed] [EuropePMC]
-
5-Aminolevulinate synthase and the first step of heme biosynthesis.
Ferreira G.C., Gong J.
5-Aminolevulinate synthase catalyzes the condensation of glycine and succinyl-CoA to yield 5-aminolevulinate. In animals, fungi, and some bacteria, 5-aminolevulinate synthase is the first enzyme of the heme biosynthetic pathway. Mutations on the human erythroid 5-aminolevulinate synthase, which is ... >> More
5-Aminolevulinate synthase catalyzes the condensation of glycine and succinyl-CoA to yield 5-aminolevulinate. In animals, fungi, and some bacteria, 5-aminolevulinate synthase is the first enzyme of the heme biosynthetic pathway. Mutations on the human erythroid 5-aminolevulinate synthase, which is localized on the X-chromosome, have been associated with X-linked sideroblastic anemia. Recent biochemical and molecular biological developments provide important insights into the structure and function of this enzyme. In animals, two aminolevulinate synthase genes, one housekeeping and one erythroid-specific, have been identified. In addition, the isolation of 5-aminolevulinate synthase genomic and cDNA clones have permitted the development of expression systems, which have tremendously increased the yields of purified enzyme, facilitating structural and functional studies. A lysine residue has been identified as the residue involved in the Schiff base linkage of the pyridoxal 5'-phosphate cofactor, and the catalytic domain has been assigned to the C-terminus of the enzyme. A conserved glycine-rich motif, common to all aminolevulinate synthases, has been proposed to be at the pyridoxal 5'-phosphate-binding site. A heme-regulatory motif, present in the presequences of 5-aminolevulinate synthase precursors, has been shown to mediate the inhibition of the mitochondrial import of the precursor proteins in the presence of heme. Finally, the regulatory mechanisms, exerted by an iron-responsive element binding protein, during the translation of erythroid 5-aminolevulinate synthase mRNA, are discussed in relation to heme biosynthesis. << Less
-
Human delta-aminolevulinate synthase: assignment of the housekeeping gene to 3p21 and the erythroid-specific gene to the X chromosome.
Bishop D.F., Henderson A.S., Astrin K.H.
delta-Aminolevulinate synthase (ALAS) catalyzes the first committed step of heme biosynthesis. Previous studies suggested that there were erythroid and nonerythroid ALAS isozymes. We have isolated cDNAs encoding the ubiquitously expressed housekeeping ALAS isozyme and a related, but distinct, eryt ... >> More
delta-Aminolevulinate synthase (ALAS) catalyzes the first committed step of heme biosynthesis. Previous studies suggested that there were erythroid and nonerythroid ALAS isozymes. We have isolated cDNAs encoding the ubiquitously expressed housekeeping ALAS isozyme and a related, but distinct, erythroid-specific isozyme. Using these different cDNAs, the human ALAS housekeeping gene (ALAS1) and the human erythroid-specific (ALAS2) gene have been localized to chromosomes 3p21 and X, respectively, by somatic cell hybrid and in situ hybridization techniques. The ALAS1 gene was concordant with chromosome 3 in all 26 human fibroblast/murine(RAG) somatic cell hybrid clones analyzed and was discordant with all other chromosomes in at least 6 of 26 clones. The regional localization of ALAS1 to 3p21 was accomplished by in situ hybridization using the 125I-labeled human ALAS1 cDNA. Of the 43 grains observed over chromosome 3, 63% were localized to the region 3p21. The gene encoding ALAS2 was assigned by examination of a DNA panel of 30 somatic cell hybrid lines hybridized with the ALAS2 cDNA. The ALAS2 gene segregated with the human X chromosome in all 30 hybrid cell lines analyzed and was discordant with all other chromosomes in at least 8 of the 30 hybrids. These results confirm the existence of two independent, but related, genes encoding human ALAS. Furthermore, the mapping of the ALAS2 gene to the X chromosome and the observed reduction in ALAS activity in X-linked sideroblastic anemia suggest that this disorder may be due to a mutation in the erythroid-specific gene. << Less
-
Soluble -aminolevulinic acid synthetase of rat liver. II. Studies related to the mechanism of enzyme action and hemin inhibition.
Scholnick P.L., Hammaker L.E., Marver H.S.