Reaction participants Show >> << Hide
- Name help_outline 3,4,5-trihydroxybenzoate Identifier CHEBI:16918 Charge -1 Formula C7H5O5 InChIKeyhelp_outline LNTHITQWFMADLM-UHFFFAOYSA-M SMILEShelp_outline Oc1cc(cc(O)c1O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 1,2,3-trihydroxybenzene Identifier CHEBI:16164 (CAS: 87-66-1) help_outline Charge 0 Formula C6H6O3 InChIKeyhelp_outline WQGWDDDVZFFDIG-UHFFFAOYSA-N SMILEShelp_outline Oc1cccc(O)c1O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 1,006 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:12749 | RHEA:12750 | RHEA:12751 | RHEA:12752 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Uncovering the Lactobacillus plantarum WCFS1 gallate decarboxylase involved in tannin degradation.
Jimenez N., Curiel J.A., Reveron I., de Las Rivas B., Munoz R.
Lactobacillus plantarum is a lactic acid bacterium able to degrade tannins by the subsequent action of tannase and gallate decarboxylase enzymes. The gene encoding tannase had previously been identified, whereas the gene encoding gallate decarboxylase is unknown. Sodium dodecyl sulfate-polyacrylam ... >> More
Lactobacillus plantarum is a lactic acid bacterium able to degrade tannins by the subsequent action of tannase and gallate decarboxylase enzymes. The gene encoding tannase had previously been identified, whereas the gene encoding gallate decarboxylase is unknown. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of gallic-acid induced L. plantarum extracts showed a 54-kDa protein which was absent in the uninduced cells. This protein was identified as Lp_2945, putatively annotated UbiD. Homology searches identified ubiD-like genes located within three-gene operons which encoded the three subunits of nonoxidative aromatic acid decarboxylases. L. plantarum is the only bacterium in which the lpdC (lp_2945) gene and the lpdB and lpdD (lp_0271 and lp_0272) genes are separated in the chromosome. Combination of extracts from recombinant Escherichia coli cells expressing the lpdB, lpdC, and lpdC genes demonstrated that LpdC is the only protein required to yield gallate decarboxylase activity. However, the disruption of these genes in L. plantarum revealed that the lpdB and lpdC gene products are essential for gallate decarboxylase activity. Similar to L. plantarum tannase, which exhibited activity only in esters derived from gallic and protocatechuic acids, purified His6-LpdC protein from E. coli showed decarboxylase activity against gallic and protocatechuic acids. In contrast to the tannase activity, gallate decarboxylase activity is widely present among lactic acid bacteria. This study constitutes the first genetic characterization of a gallate decarboxylase enzyme and provides new insights into the role of the different subunits of bacterial nonoxidative aromatic acid decarboxylases. << Less
Appl. Environ. Microbiol. 79:4253-4263(2013) [PubMed] [EuropePMC]
-
The non-oxidative decarboxylation of p-hydroxybenzoic acid, gentisic acid, protocatechuic acid and gallic acid by Klebsiella aerogenes (Aerobacter aerogenes).
Grant D.J., Patel J.C.
Antonie Van Leeuwenhoek 35:325-343(1969) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Purification and characterization of gallic acid decarboxylase from pantoea agglomerans T71.
Zeida M., Wieser M., Yoshida T., Sugio T., Nagasawa T.
Oxygen-sensitive gallic acid decarboxylase from Pantoea (formerly Enterobacter) agglomerans T71 was purified from a cell extract after stabilization by reducing agents. This enzyme has a molecular mass of approximately 320 kDa and consists of six identical subunits. It is highly specific for galli ... >> More
Oxygen-sensitive gallic acid decarboxylase from Pantoea (formerly Enterobacter) agglomerans T71 was purified from a cell extract after stabilization by reducing agents. This enzyme has a molecular mass of approximately 320 kDa and consists of six identical subunits. It is highly specific for gallic acid. Gallic acid decarboxylase is unique among similar decarboxylases in that it requires iron as a cofactor, as shown by plasma emission spectroscopy (which revealed an iron content of 0.8 mol per mol of enzyme subunit), spectrophotometric analysis (absorption shoulders at 398 and 472 nm), and inhibition of the enzyme activity by 2,2'-bipyridyl, o-phenanthroline, and EDTA. Another interesting feature of this strain is the fact that it contains a tannase, which is used together with the gallic acid decarboxylase in a two-enzyme resting cell bioconversion to synthesize valuable pyrogallol from readily available tannic acid. << Less
Appl Environ Microbiol 64:4743-4747(1998) [PubMed] [EuropePMC]