Reaction participants Show >> << Hide
- Name help_outline nicotinate β-D-ribonucleotide Identifier CHEBI:57502 Charge -2 Formula C11H12NO9P InChIKeyhelp_outline JOUIQRNQJGXQDC-ZYUZMQFOSA-L SMILEShelp_outline O[C@H]1[C@@H](O)[C@@H](O[C@@H]1COP([O-])([O-])=O)[n+]1cccc(c1)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 8 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 1,006 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,139 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline quinolinate Identifier CHEBI:29959 Charge -2 Formula C7H3NO4 InChIKeyhelp_outline GJAWHXHKYYXBSV-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)c1cccnc1C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 5-phospho-α-D-ribose 1-diphosphate Identifier CHEBI:58017 Charge -5 Formula C5H8O14P3 InChIKeyhelp_outline PQGCEDQWHSBAJP-TXICZTDVSA-I SMILEShelp_outline O[C@H]1[C@@H](O)[C@H](O[C@@H]1COP([O-])([O-])=O)OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 22 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:12733 | RHEA:12734 | RHEA:12735 | RHEA:12736 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline | ||||
Reactome help_outline | ||||
M-CSA help_outline |
Publications
-
Quinolinate phosphoribosyltransferase: kinetic mechanism for a type II PRTase.
Cao H., Pietrak B.L., Grubmeyer C.
Quinolinate phosphoribosyltransferase (QAPRTase, EC 2.4.2.19) catalyzes the formation of nicotinate mononucleotide, carbon dioxide, and pyrophosphate from 5-phosphoribosyl 1-pyrophosphate (PRPP) and quinolinic acid (QA, pyridine 2,3-dicarboxylic acid). The enzyme is the only type II PRTase whose X ... >> More
Quinolinate phosphoribosyltransferase (QAPRTase, EC 2.4.2.19) catalyzes the formation of nicotinate mononucleotide, carbon dioxide, and pyrophosphate from 5-phosphoribosyl 1-pyrophosphate (PRPP) and quinolinic acid (QA, pyridine 2,3-dicarboxylic acid). The enzyme is the only type II PRTase whose X-ray structure is known. Here we determined the kinetic mechanism of the enzyme from Salmonella typhimurium. Equilibrium binding studies show that PRPP and QA each form binary complexes with the enzyme, with K(D) values (53 and 21 microM, respectively) similar to their K(M) values (30 and 25 microM, respectively). Although neither PP(i) nor NAMN products bound well to the enzyme, 130-fold tighter binding of PP(i) (K(D) = 75 microM) and NAMN (K(D) = 6 microM) in a ternary complex was observed. Phthalic acid (K(D) = 21 microM) and PRPP each caused a 2.5-fold tightening of the other's binding. Isotope trapping experiments indicated that the E.QA complex is catalytically competent, whereas the E.PRPP complex could not be trapped. Pre-steady-state kinetics gave a linear rate of NAMN formation, indicating that on-enzyme phosphoribosyl transfer chemistry is rate-determining. Isotope trapping from the steady state revealed that nearly all QA and about one-third of PRPP in ternary enzyme.QA.PRPP complexes could be trapped as the product. Substrate inhibition by PRPP was observed. These data demonstrate a predominantly ordered kinetic mechanism in which productive binding of quinolinic acid precedes that of PRPP. An E.PRPP complex exists as a nonproductive side branch. << Less
-
Crystal structure of quinolinic acid phosphoribosyltransferase from Helicobacter pylori.
Kim M.-K., Im Y.J., Lee J.H., Eom S.H.
-
Structural and kinetic characterization of quinolinate phosphoribosyltransferase (hQPRTase) from homo sapiens.
Liu H., Woznica K., Catton G., Crawford A., Botting N., Naismith J.H.
Human quinolinate phosphoribosyltransferase (EC 2.4.2.19) (hQPRTase) is a member of the type II phosphoribosyltransferase family involved in the catabolism of quinolinic acid (QA). It catalyses the formation of nicotinic acid mononucleotide from quinolinic acid, which involves a phosphoribosyl tra ... >> More
Human quinolinate phosphoribosyltransferase (EC 2.4.2.19) (hQPRTase) is a member of the type II phosphoribosyltransferase family involved in the catabolism of quinolinic acid (QA). It catalyses the formation of nicotinic acid mononucleotide from quinolinic acid, which involves a phosphoribosyl transfer reaction followed by decarboxylation. hQPRTase has been implicated in a number of neurological conditions and in order to study it further, we have carried out structural and kinetic studies on recombinant hQPRTase. The structure of the fully active enzyme overexpressed in Escherichia coli was solved using multiwavelength methods to a resolution of 2.0 A. hQPRTase has a alpha/beta barrel fold sharing a similar overall structure with the bacterial QPRTases. The active site of hQPRTase is located at an alpha/beta open sandwich structure that serves as a cup for the alpha/beta barrel of the adjacent subunit with a QA binding site consisting of three arginine residues (R102, R138 and R161) and two lysine residues (K139 and K171). Mutation of these residues affected substrate binding or abolished the enzymatic activity. The kinetics of the human enzyme are different to the bacterial enzymes studied, hQPRTase is inhibited competitively and non-competitively by one of its substrates, 5-phosphoribosylpyrophosphate (PRPP). The human enzyme adopts a hexameric arrangement, which places the active sites in close proximity to each other. << Less