Reaction participants Show >> << Hide
- Name help_outline dGMP Identifier CHEBI:57673 (Beilstein: 7349077,3575246) help_outline Charge -2 Formula C10H12N5O7P InChIKeyhelp_outline LTFMZDNNPPEQNG-KVQBGUIXSA-L SMILEShelp_outline Nc1nc2n(cnc2c(=O)[nH]1)[C@H]1C[C@H](O)[C@@H](COP([O-])([O-])=O)O1 2D coordinates Mol file for the small molecule Search links Involved in 15 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,284 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline dGDP Identifier CHEBI:58595 (Beilstein: 11523263) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline CIKGWCTVFSRMJU-KVQBGUIXSA-K SMILEShelp_outline Nc1nc2n(cnc2c(=O)[nH]1)[C@H]1C[C@H](O)[C@@H](COP([O-])(=O)OP([O-])([O-])=O)O1 2D coordinates Mol file for the small molecule Search links Involved in 13 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:12697 | RHEA:12698 | RHEA:12699 | RHEA:12700 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline | ||||
Reactome help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Cloning of the guanylate kinase homologues AGK-1 and AGK-2 from Arabidopsis thaliana and characterization of AGK-1.
Kumar V., Spangenberg O., Konrad M.
Guanylate kinase is an essential enzyme for nucleotide metabolism, phosphorylating GMP to GDP or dGMP to dGDP. The low molecular mass cytosolic forms of guanylate kinase are implicated primarily in the regulation of the supply of guanine nucleotides to cell signalling pathways. The high molecular ... >> More
Guanylate kinase is an essential enzyme for nucleotide metabolism, phosphorylating GMP to GDP or dGMP to dGDP. The low molecular mass cytosolic forms of guanylate kinase are implicated primarily in the regulation of the supply of guanine nucleotides to cell signalling pathways. The high molecular mass and membrane-associated forms of guanylate kinase homologues, notably found in neuronal tissues, are assigned roles in cell junction organization and transmembrane regulation. Here, we describe the first plant guanylate kinase-encoding genes, AGK1 and AGK2, from Arabidopsis thaliana. The nucleotide sequences of their genomic and cDNA clones predict proteins that carry N-terminal and C-terminal extensions of the guanylate kinase-like domain. The amino acid sequences of this domain share 46-52% identity with guanylate kinases from yeast, Escherichia coli, human, mouse and Caenorhabditis elegans. Arabidopsis guanylate kinases (AGKs) exhibit a high degree of conservation of active site residues and sequence motifs in common with other nucleoside monophosphate kinases, which suggests overall structural similarity of the plant proteins. Although bacterially expressed AGK-1 is enzymatically much less active than yeast guanylate kinase, its kinase domain is shown to complement yeast GUK1 recessive lethal mutations. AGKs are expressed ubiquitously in plant tissues with highest transcriptional activity detected in roots. The identification of AGKs provides new perspectives for understanding the role of guanylate kinases in plant cell signalling pathways. << Less
-
The rice nuclear gene, VIRESCENT 2, is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria.
Sugimoto H., Kusumi K., Noguchi K., Yano M., Yoshimura A., Iba K.
Guanylate kinase (GK) is a critical enzyme in guanine nucleotide metabolism pathways, catalyzing the phosphorylation of (d)GMP to (d)GDP. Here we show that a novel gene, VIRESCENT 2 (V2), encodes a new type of GK (designated pt/mtGK) that is localized in plastids and mitochondria. We initially ide ... >> More
Guanylate kinase (GK) is a critical enzyme in guanine nucleotide metabolism pathways, catalyzing the phosphorylation of (d)GMP to (d)GDP. Here we show that a novel gene, VIRESCENT 2 (V2), encodes a new type of GK (designated pt/mtGK) that is localized in plastids and mitochondria. We initially identified the V2 gene by positional cloning of the rice v2 mutant. The v2 mutant is temperature-sensitive and develops chlorotic leaves at restrictive temperatures. The v2 mutation causes inhibition of chloroplast differentiation; in particular, it disrupts the chloroplast translation machinery during early leaf development [Sugimoto et al. (2004)Plant Cell Physiol. 45, 985]. In the bacterial and animal species studied to date, GK is localized in the cytoplasm and participates in maintenance of the guanine nucleotide pools required for many fundamental cellular processes. Phenotypic analysis of rice seedlings with RNAi knockdown of cytosolic GK (designated cGK) showed that cGK is indispensable for the growth and development of plants, but not for chloroplast development. Thus, rice has two types of GK, as does Arabidopsis, suggesting that higher plants have two types of GK. Our results suggest that, of the two types of GK, only pt/mtGK is essential for chloroplast differentiation. << Less
-
Purification and properties of guanylate kinase from Escherichia coli.
Oeschger M.P., Bessman M.J.
J Biol Chem 241:5452-5460(1966) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Crystal structures of GMP kinase in complex with ganciclovir monophosphate and Ap5G.
Hible G., Daalova P., Gilles A.M., Cherfils J.
Guanosine monophosphate kinases (GMPK), by catalyzing the phosphorylation of GMP or dGMP, are of dual potential in assisting the activation of anti-viral prodrugs or as candidates for antibiotic strategies. Human GMPK is an obligate step for the activation of acyclic guanosine analogs, such as gan ... >> More
Guanosine monophosphate kinases (GMPK), by catalyzing the phosphorylation of GMP or dGMP, are of dual potential in assisting the activation of anti-viral prodrugs or as candidates for antibiotic strategies. Human GMPK is an obligate step for the activation of acyclic guanosine analogs, such as ganciclovir, which necessitate efficient phosphorylation, while GMPK from bacterial pathogens, in which this enzyme is essential, are potential targets for therapeutic inhibition. Here we analyze these two aspects of GMPK activity with the crystal structures of Escherichia coli GMPK in complex with ganciclovir-monophosphate (GCV-MP) and with a bi-substrate inhibitor, Ap5G. GCV-MP binds as GMP to the GMP-binding domain, which is identical in E. coli and human GMPKs, but unlike the natural substrate fails to stabilize the closed, catalytically-competent conformation of this domain. Comparison with GMP- and GDP-bound GMPK structures identifies the 2'hydroxyl of the ribose moiety as responsible for hooking the GMP-binding domain onto the CORE domain. Absence of this hydroxyl in GCV-MP impairs the stabilization of the active conformation, and explains why GCV-MP is phosphorylated less efficiently than GMP, but as efficiently as dGMP. In contrast, Ap5G is an efficient inhibitor of GMPK. The crystal structure shows that Ap5G locks an incompletely closed conformation of the enzyme, in which the adenine moiety is located outside its expected binding site. Instead, it binds at a subunit interface that is unique to the bacterial enzyme, which is in equilibrium between a dimeric and an hexameric form in solution. This suggests that inhibitors could be designed to bind at this interface such as to prevent nucleotide-induced domain closure. Altogether, these complexes point to domain motions as critical components to be evaluated in therapeutic strategies targeting NMP kinases, with opposite effects depending on whether efficient phosphorylation or inhibition is being sought after. << Less