Enzymes
UniProtKB help_outline | 1 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline 2-oxoglutarate Identifier CHEBI:16810 (Beilstein: 3664503; CAS: 64-15-3) help_outline Charge -2 Formula C5H4O5 InChIKeyhelp_outline KPGXRSRHYNQIFN-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CCC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 425 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-hyoscyamine Identifier CHEBI:58164 Charge 1 Formula C17H24NO3 InChIKeyhelp_outline RKUNBYITZUJHSG-FXUDXRNXSA-O SMILEShelp_outline C[NH+]1[C@H]2CC[C@@H]1C[C@@H](C2)OC(=O)[C@H](CO)c1ccccc1 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (6S)-6-hydroxyhyoscyamine Identifier CHEBI:57459 Charge 1 Formula C17H24NO4 InChIKeyhelp_outline WTQYWNWRJNXDEG-VXUTWAGNSA-O SMILEShelp_outline C[NH+]1[C@H]2C[C@@H](C[C@@H]1[C@@H](O)C2)OC(=O)C(CO)c1ccccc1 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (Beilstein: 1900390; CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 997 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline succinate Identifier CHEBI:30031 (Beilstein: 1863859; CAS: 56-14-4) help_outline Charge -2 Formula C4H4O4 InChIKeyhelp_outline KDYFGRWQOYBRFD-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 331 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:12629 | RHEA:12630 | RHEA:12631 | RHEA:12632 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Molecular cloning of hyoscyamine 6 beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, from cultured roots of Hyoscyamus niger.
Matsuda J., Okabe S., Hashimoto T., Yamada Y.
Roots of several solanaceous plants produce anticholinergic alkaloids, hyoscyamine and scopolamine. Hyoscyamine 6 beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase (EC 1.14.11.11), catalyzes hydroxylation of hyoscyamine in the biosynthetic pathway leading to scopolamine. We report here on t ... >> More
Roots of several solanaceous plants produce anticholinergic alkaloids, hyoscyamine and scopolamine. Hyoscyamine 6 beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase (EC 1.14.11.11), catalyzes hydroxylation of hyoscyamine in the biosynthetic pathway leading to scopolamine. We report here on the isolation of cDNA clones encoding the hydroxylase from a cDNA library made from mRNA of the cultured roots of Hyoscyamus niger. The library was screened with three synthetic oligonucleotides that encode amino acid sequences of internal peptide fragments of the purified hydroxylase. Nucleotide sequence analysis of the cloned cDNA revealed an open reading frame that encodes 344 amino acids (Mr = 38,999). All 12 internal peptide fragments determined in the purified enzyme were found in the amino acid sequence deduced from the cDNA. With computer-aided comparison to other proteins we found that the hydroxylase is homologous to two synthases involved in the biosynthesis of beta-lactam antibiotics in some microorganisms and the gene products of tomato pTOM13 cDNA and maize A2 locus which had been proposed to catalyze oxidative reactions in the biosynthesis of ethylene and anthocyan, respectively. RNA blotting hybridization showed that mRNA of the hydroxylase is abundant in cultured roots and present in plant roots, but absent in leaves, stems, and cultured cells of H. niger. << Less
-
Hyoscyamine 6beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, in alkaloid-producing root cultures.
Hashimoto T., Yamada Y.
Root cultures of various solanaceous plants grow well in vitro and produce large amounts of tropane alkaloids. Enzyme activity that converts hyoscyamine to 6beta-hydroxyhyoscyamine is present in cell-free extracts from cultured roots of Hyoscyamus niger L. The enzyme hyoscyamine 6beta-hydroxylase ... >> More
Root cultures of various solanaceous plants grow well in vitro and produce large amounts of tropane alkaloids. Enzyme activity that converts hyoscyamine to 6beta-hydroxyhyoscyamine is present in cell-free extracts from cultured roots of Hyoscyamus niger L. The enzyme hyoscyamine 6beta-hydroxylase was purified 3.3-fold and characterized. The hydroxylation reaction has absolute requirements for hyoscyamine, 2-oxoglutarate, Fe(2+) ions and molecular oxygen, and ascorbate stimulates this reaction. Only the l-isomer of hyoscyamine serves as a substrate; d-hyoscyamine is nearly inactive. Comparisons were made with a number of root, shoot, and callus cultures of the Atropa, Datura, Duboisia, Hyoscyamus, and Nicotiana species for the presence of the hydroxylase activity. Decarboxylation of 2-oxoglutarate during the conversion reaction was studied using [1-(14)C]-2-oxoglutarate. A 1:1 stoichiometry was shown between the hyoscyamine-dependent formation of CO(2) from 2-oxoglutarate and the hydroxylation of hyoscyamine. Therefore, the enzyme can be classified as a 2-oxoglutarate-dependent dioxygenase (EC 1.14.11.-). Both the supply of hyoscyamine and the hydroxylase activity determine the amounts of 6beta-hydroxyhyoscyamine and scopolamine produced in alkaloid-producing cultures. << Less