Enzymes
UniProtKB help_outline | 1,596 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline L-arogenate Identifier CHEBI:58180 Charge -1 Formula C10H12NO5 InChIKeyhelp_outline MIEILDYWGANZNH-DSQUFTABSA-M SMILEShelp_outline [NH3+][C@@H](CC1(C=CC(O)C=C1)C([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-phenylalanine Identifier CHEBI:58095 Charge 0 Formula C9H11NO2 InChIKeyhelp_outline COLNVLDHVKWLRT-QMMMGPOBSA-N SMILEShelp_outline [NH3+][C@@H](Cc1ccccc1)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 74 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 1,006 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:12536 | RHEA:12537 | RHEA:12538 | RHEA:12539 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Kinetic and regulatory properties of arogenate dehydratase in seedlings of Sorghum bicolor (L.) Moench.
Siehl D.L., Conn E.E.
Arogenate dehydratase was purified sixfold from an extract of etiolated seedlings of Sorghum bicolor. Prephenate dehydratase was not detected. The arogenate dehydratase activity displayed hyperbolic substrate kinetics with a KM for arogenate of 0.32 mM. Activity was inhibited competitively by phen ... >> More
Arogenate dehydratase was purified sixfold from an extract of etiolated seedlings of Sorghum bicolor. Prephenate dehydratase was not detected. The arogenate dehydratase activity displayed hyperbolic substrate kinetics with a KM for arogenate of 0.32 mM. Activity was inhibited competitively by phenylalanine and was stimulated by tyrosine. The low KI for phenylalanine (24 microM) and KA for tyrosine (2.5 microM) indicated a high affinity of the enzyme for these effectors. These results establish the routing of metabolites in phenylalanine biosynthesis in sorghum as proceeding via arogenate rather than phenylpyruvate. << Less
-
Phenylalanine biosynthesis in Arabidopsis thaliana. Identification and characterization of arogenate dehydratases.
Cho M.-H., Corea O.R.A., Yang H., Bedgar D.L., Laskar D.D., Anterola A.M., Moog-Anterola F.A., Hood R.L., Kohalmi S.E., Bernards M.A., Kang C., Davin L.B., Lewis N.G.
There is much uncertainty as to whether plants use arogenate, phenylpyruvate, or both as obligatory intermediates in Phe biosynthesis, an essential dietary amino acid for humans. This is because both prephenate and arogenate have been reported to undergo decarboxylative dehydration in plants via t ... >> More
There is much uncertainty as to whether plants use arogenate, phenylpyruvate, or both as obligatory intermediates in Phe biosynthesis, an essential dietary amino acid for humans. This is because both prephenate and arogenate have been reported to undergo decarboxylative dehydration in plants via the action of either arogenate (ADT) or prephenate (PDT) dehydratases; however, neither enzyme(s) nor encoding gene(s) have been isolated and/or functionally characterized. An in silico data mining approach was thus undertaken to attempt to identify the dehydratase(s) involved in Phe formation in Arabidopsis, based on sequence similarity of PDT-like and ACT-like domains in bacteria. This data mining approach suggested that there are six PDT-like homologues in Arabidopsis, whose phylogenetic analyses separated them into three distinct subgroups. All six genes were cloned and subsequently established to be expressed in all tissues examined. Each was then expressed as a Nus fusion recombinant protein in Escherichia coli, with their substrate specificities measured in vitro. Three of the resulting recombinant proteins, encoded by ADT1 (At1g11790), ADT2 (At3g07630), and ADT6 (At1g08250), more efficiently utilized arogenate than prephenate, whereas the remaining three, ADT3 (At2g27820), ADT4 (At3g44720), and ADT5 (At5g22630) essentially only employed arogenate. ADT1, ADT2, and ADT6 had k(cat)/Km values of 1050, 7650, and 1560 M(-1) S(-1) for arogenate versus 38, 240, and 16 M(-1) S(-1) for prephenate, respectively. By contrast, the remaining three, ADT3, ADT4, and ADT5, had k(cat)/Km values of 1140, 490, and 620 M(-1) S(-1), with prephenate not serving as a substrate unless excess recombinant protein (>150 microg/assay) was used. All six genes, and their corresponding proteins, are thus provisionally classified as arogenate dehydratases and designated ADT1-ADT6. << Less
-
Arogenate dehydratase.
Fischer R., Jensen R.