Enzymes
UniProtKB help_outline | 20 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-dopa Identifier CHEBI:57504 Charge 0 Formula C9H11NO4 InChIKeyhelp_outline WTDRDQBEARUVNC-LURJTMIESA-N SMILEShelp_outline [NH3+][C@@H](Cc1ccc(O)c(O)c1)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 15 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (Beilstein: 1900390; CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 997 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline dopamine Identifier CHEBI:59905 Charge 1 Formula C8H12NO2 InChIKeyhelp_outline VYFYYTLLBUKUHU-UHFFFAOYSA-O SMILEShelp_outline [NH3+]CCc1ccc(O)c(O)c1 2D coordinates Mol file for the small molecule Search links Involved in 26 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:12272 | RHEA:12273 | RHEA:12274 | RHEA:12275 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
Reactome help_outline |
Publications
-
Structural insight into Parkinson's disease treatment from drug-inhibited DOPA decarboxylase.
Burkhard P., Dominici P., Borri-Voltattorni C., Jansonius J.N., Malashkevich V.N.
DOPA decarboxylase (DDC) is responsible for the synthesis of the key neurotransmitters dopamine and serotonin via decarboxylation of L-3,4-dihydroxyphenylalanine (L-DOPA) and L-5-hydroxytryptophan, respectively. DDC has been implicated in a number of clinic disorders, including Parkinson's disease ... >> More
DOPA decarboxylase (DDC) is responsible for the synthesis of the key neurotransmitters dopamine and serotonin via decarboxylation of L-3,4-dihydroxyphenylalanine (L-DOPA) and L-5-hydroxytryptophan, respectively. DDC has been implicated in a number of clinic disorders, including Parkinson's disease and hypertension. Peripheral inhibitors of DDC are currently used to treat these diseases. We present the crystal structures of ligand-free DDC and its complex with the anti-Parkinson drug carbiDOPA. The inhibitor is bound to the enzyme by forming a hydrazone linkage with the cofactor, and its catechol ring is deeply buried in the active site cleft. The structures provide the molecular basis for the development of new inhibitors of DDC with better pharmacological characteristics. << Less
-
Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism.
Maini Rekdal V., Bess E.N., Bisanz J.E., Turnbaugh P.J., Balskus E.P.
The human gut microbiota metabolizes the Parkinson's disease medication Levodopa (l-dopa), potentially reducing drug availability and causing side effects. However, the organisms, genes, and enzymes responsible for this activity in patients and their susceptibility to inhibition by host-targeted d ... >> More
The human gut microbiota metabolizes the Parkinson's disease medication Levodopa (l-dopa), potentially reducing drug availability and causing side effects. However, the organisms, genes, and enzymes responsible for this activity in patients and their susceptibility to inhibition by host-targeted drugs are unknown. Here, we describe an interspecies pathway for gut bacterial l-dopa metabolism. Conversion of l-dopa to dopamine by a pyridoxal phosphate-dependent tyrosine decarboxylase from <i>Enterococcus faecalis</i> is followed by transformation of dopamine to <i>m</i>-tyramine by a molybdenum-dependent dehydroxylase from <i>Eggerthella lenta</i> These enzymes predict drug metabolism in complex human gut microbiotas. Although a drug that targets host aromatic amino acid decarboxylase does not prevent gut microbial l-dopa decarboxylation, we identified a compound that inhibits this activity in Parkinson's patient microbiotas and increases l-dopa bioavailability in mice. << Less
Science 364:0-0(2019) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Molecular cloning of genomic DNA and chromosomal assignment of the gene for human aromatic L-amino acid decarboxylase, the enzyme for catecholamine and serotonin biosynthesis.
Sumi-Ichinose C., Ichinose H., Takahashi E., Hori T., Nagatsu T.
Aromatic L-amino acid decarboxylase (AADC) catalyzes the decarboxylation of both L-3,4-dihydroxyphenylalanine and L-5-hydroxytryptophan to dopamine and serotonin, respectively, which are major mammalian neurotransmitters and hormones belonging to catecholamines and indoleamines. This report descri ... >> More
Aromatic L-amino acid decarboxylase (AADC) catalyzes the decarboxylation of both L-3,4-dihydroxyphenylalanine and L-5-hydroxytryptophan to dopamine and serotonin, respectively, which are major mammalian neurotransmitters and hormones belonging to catecholamines and indoleamines. This report describes the organization of the human AADC gene. We proved that the gene of human AADC consists of 15 exons spanning more than 85 kilobases and exists as a single copy in the haploid genome. The boundaries between exon and intron followed the AG/GT rule. The sizes of exons and introns ranged from 20 to 400 bp and from 1.0 to 17.7 kb, respectively, while the sizes of four introns were not determined. Untranslated regions located in the 5' region of mRNA were encoded by two exons, exons 1 and 2. The transcriptional starting point was determined around G at position -111 by primer extension and S1 mapping. There were no typical "TATA box" and "CAAT box" within 540 bp from the transcriptional starting point. The human AADC gene was mapped to chromosome band 7p12.1-p12.3 by fluorescence in situ hybridization. This is the first report on the genomic structure and chromosomal localization of the AADC gene in mammals. << Less
Biochemistry 31:2229-2238(1992) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Open conformation of human DOPA decarboxylase reveals the mechanism of PLP addition to Group II decarboxylases.
Giardina G., Montioli R., Gianni S., Cellini B., Paiardini A., Voltattorni C.B., Cutruzzola F.
DOPA decarboxylase, the dimeric enzyme responsible for the synthesis of neurotransmitters dopamine and serotonin, is involved in severe neurological diseases such as Parkinson disease, schizophrenia, and depression. Binding of the pyridoxal-5'-phosphate (PLP) cofactor to the apoenzyme is thought t ... >> More
DOPA decarboxylase, the dimeric enzyme responsible for the synthesis of neurotransmitters dopamine and serotonin, is involved in severe neurological diseases such as Parkinson disease, schizophrenia, and depression. Binding of the pyridoxal-5'-phosphate (PLP) cofactor to the apoenzyme is thought to represent a central mechanism for the regulation of its activity. We solved the structure of the human apoenzyme and found it exists in an unexpected open conformation: compared to the pig kidney holoenzyme, the dimer subunits move 20 Å apart and the two active sites become solvent exposed. Moreover, by tuning the PLP concentration in the crystals, we obtained two more structures with different conformations of the active site. Analysis of three-dimensional data coupled to a kinetic study allows to identify the structural determinants of the open/close conformational change occurring upon PLP binding and thereby propose a model for the preferential degradation of the apoenzymes of Group II decarboxylases. << Less
Proc. Natl. Acad. Sci. U.S.A. 108:20514-20519(2011) [PubMed] [EuropePMC]
-
Reactions of DOPA (3,4-dihydroxyphenylalanine) decarboxylase with DOPA.
Minelli A., Charteris A.T., Voltattorni C.B., John R.A.
The study of DOPA (3,4-dihydroxyphenylalanine) decarboxylase by steady-state methods is difficult because multiple reactions occur. The reaction with DOPA was studied at enzyme concentrations between 20 and 50 micrometer by direct observation of the bound coenzyme by using stopped-flow and convent ... >> More
The study of DOPA (3,4-dihydroxyphenylalanine) decarboxylase by steady-state methods is difficult because multiple reactions occur. The reaction with DOPA was studied at enzyme concentrations between 20 and 50 micrometer by direct observation of the bound coenzyme by using stopped-flow and conventional spectrophotometry. Four processes were observed on different time scales and three of these were attributed to stages in the decarboxylation. The fourth was attributed to an accompanying transamination that renders the enzyme inactive. It was clear that much, if not all, of the 330 nm-absorbing coenzyme present in the free enzyme plays an active part in the decarboxylation, since it is converted into 420 nm-absorbing material in the first observable step. An intermediate absorbing maximally at 390 nm is formed in a slower step. Rate and equilibrium constants have been determined and the ratio of decarboxylation to transamination was estimated to be 1200:1. << Less
-
Dopa decarboxylase (Ddc) affects variation in Drosophila longevity.
De Luca M., Roshina N.V., Geiger-Thornsberry G.L., Lyman R.F., Pasyukova E.G., Mackay T.F.C.
Mutational analyses in model organisms have shown that genes affecting metabolism and stress resistance regulate life span, but the genes responsible for variation in longevity in natural populations are largely unidentified. Previously, we mapped quantitative trait loci (QTLs) affecting variation ... >> More
Mutational analyses in model organisms have shown that genes affecting metabolism and stress resistance regulate life span, but the genes responsible for variation in longevity in natural populations are largely unidentified. Previously, we mapped quantitative trait loci (QTLs) affecting variation in longevity between two Drosophila melanogaster strains. Here, we show that the longevity QTL in the 36E;38B cytogenetic interval on chromosome 2 contains multiple closely linked QTLs, including the Dopa decarboxylase (Ddc) locus. Complementation tests to mutations show that Ddc is a positional candidate gene for life span in these strains. Linkage disequilibrium (LD) mapping in a sample of 173 alleles from a single population shows that three common molecular polymorphisms in Ddc account for 15.5% of the genetic contribution to variance in life span from chromosome 2. The polymorphisms are in strong LD, and the effects of the haplotypes on longevity suggest that the polymorphisms are maintained by balancing selection. DDC catalyzes the final step in the synthesis of the neurotransmitters, dopamine and serotonin. Thus, these data implicate variation in the synthesis of bioamines as a factor contributing to natural variation in individual life span. << Less
-
Crystal structure of tyrosine decarboxylase and identification of key residues involved in conformational swing and substrate binding.
Zhu H., Xu G., Zhang K., Kong X., Han R., Zhou J., Ni Y.
Tyrosine decarboxylase (TDC) is a pyridoxal 5-phosphate (PLP)-dependent enzyme and is mainly responsible for the synthesis of tyramine, an important biogenic amine. In this study, the crystal structures of the apo and holo forms of Lactobacillus brevis TDC (LbTDC) were determined. The LbTDC displa ... >> More
Tyrosine decarboxylase (TDC) is a pyridoxal 5-phosphate (PLP)-dependent enzyme and is mainly responsible for the synthesis of tyramine, an important biogenic amine. In this study, the crystal structures of the apo and holo forms of Lactobacillus brevis TDC (LbTDC) were determined. The LbTDC displays only 25% sequence identity with the only reported TDC structure. Site-directed mutagenesis of the conformationally flexible sites and catalytic center was performed to investigate the potential catalytic mechanism. It was found that H241 in the active site plays an important role in PLP binding because it has different conformations in the apo and holo structures of LbTDC. After binding to PLP, H241 rotated to the position adjacent to the PLP pyridine ring. Alanine scanning mutagenesis revealed several crucial regions that determine the substrate specificity and catalytic activity. Among the mutants, the S586A variant displayed increased catalytic efficiency and substrate affinity, which is attributed to decreased steric hindrance and increased hydrophobicity, as verified by the saturation mutagenesis at S586. Our results provide structural information about the residues important for the protein engineering of TDC to improve catalytic efficiency in the green manufacturing of tyramine. << Less
Sci. Rep. 6:27779-27779(2016) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Tyrosine decarboxylase from Lactobacillus brevis: Soluble expression and characterization.
Zhang K., Ni Y.
Tyrosine decarboxylase (TDC, EC 4.1.1.25) is an enzyme that catalyzes the decarboxylation of l-tyrosine to produce tyramine and CO2. In this study, a 1881-bp tdc gene from Lactobacillus brevis was cloned and heterologously expressed in Escherichia coli BL21 (DE3). Glucose was discovered to play an ... >> More
Tyrosine decarboxylase (TDC, EC 4.1.1.25) is an enzyme that catalyzes the decarboxylation of l-tyrosine to produce tyramine and CO2. In this study, a 1881-bp tdc gene from Lactobacillus brevis was cloned and heterologously expressed in Escherichia coli BL21 (DE3). Glucose was discovered to play an important role in the soluble expression of rLbTDC. After optimization, recombinant TDC (rLbTDC) was achieved in excellent solubility and a yield of 224mg rLbTDC/L broth. The C-terminal His-Tagged rLbTDC was one-step purified with 90% recovery. Based on SDS-PAGE and gel filtration analysis, rLbTDC is a dimer composed of two identical subunits of approximately 70kDa. Using l-tyrosine as substrate, the specific activity of rLbTDC was determined to be 133.5U/mg in the presence of 0.2mM pyridoxal-5'-phosphate at 40°C and pH 5.0. The Km and Vmax values of rLbTDC were 0.59mM and 147.1μmolmin(-1)mg(-1), respectively. In addition to l-tyrosine, rLbTDC also exhibited decarboxylase activity towards l-DOPA. This study has demonstrated, for the first time, the soluble expression of tdc gene from L. brevis in heterologous host. << Less
Protein Expr. Purif. 94:33-39(2014) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson's disease.
van Kessel S.P., Frye A.K., El-Gendy A.O., Castejon M., Keshavarzian A., van Dijk G., El Aidy S.
Human gut microbiota senses its environment and responds by releasing metabolites, some of which are key regulators of human health and disease. In this study, we characterize gut-associated bacteria in their ability to decarboxylate levodopa to dopamine via tyrosine decarboxylases. Bacterial tyro ... >> More
Human gut microbiota senses its environment and responds by releasing metabolites, some of which are key regulators of human health and disease. In this study, we characterize gut-associated bacteria in their ability to decarboxylate levodopa to dopamine via tyrosine decarboxylases. Bacterial tyrosine decarboxylases efficiently convert levodopa to dopamine, even in the presence of tyrosine, a competitive substrate, or inhibitors of human decarboxylase. In situ levels of levodopa are compromised by high abundance of gut bacterial tyrosine decarboxylase in patients with Parkinson's disease. Finally, the higher relative abundance of bacterial tyrosine decarboxylases at the site of levodopa absorption, proximal small intestine, had a significant impact on levels of levodopa in the plasma of rats. Our results highlight the role of microbial metabolism in drug availability, and specifically, that abundance of bacterial tyrosine decarboxylase in the proximal small intestine can explain the increased dosage regimen of levodopa treatment in Parkinson's disease patients. << Less
Nat. Commun. 10:310-310(2019) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.