Enzymes
UniProtKB help_outline | 4 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,285 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline nicotinate Identifier CHEBI:32544 (Beilstein: 3539722) help_outline Charge -1 Formula C6H4NO2 InChIKeyhelp_outline PVNIIMVLHYAWGP-UHFFFAOYSA-M SMILEShelp_outline [O-]C(=O)c1cccnc1 2D coordinates Mol file for the small molecule Search links Involved in 16 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 6-hydroxynicotinate Identifier CHEBI:57664 Charge -1 Formula C6H4NO3 InChIKeyhelp_outline BLHCMGRVFXRYRN-UHFFFAOYSA-M SMILEShelp_outline Oc1ccc(cn1)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,279 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:12236 | RHEA:12237 | RHEA:12238 | RHEA:12239 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Nicotinic acid hydroxylase from Clostridium barkeri: electron paramagnetic resonance studies show that selenium is coordinated with molybdenum in the catalytically active selenium-dependent enzyme.
Gladyshev V.N., Khangulov S.V., Stadtman T.C.
Nicotinic acid hydroxylase from Clostridium barkeri contains selenium in an unidentified form that is dissociated as a low molecular weight compound upon denaturation of the enzyme. Other cofactors of this enzyme are molybdopterin, FAD, and iron-sulfur clusters. In the current study, we show that ... >> More
Nicotinic acid hydroxylase from Clostridium barkeri contains selenium in an unidentified form that is dissociated as a low molecular weight compound upon denaturation of the enzyme. Other cofactors of this enzyme are molybdopterin, FAD, and iron-sulfur clusters. In the current study, we show that the enzyme, as isolated, exhibits a stable Mo(V) electron paramagnetic resonance (EPR) signal ("resting" signal) and that this signal is correlated with the selenium content and nicotinate hydroxylase activity of the enzyme. Substitution of 77Se for normal selenium isotope abundance results in splitting of the Mo(V) EPR signal of the native protein without affecting the iron signals of the FeS clusters. The Mo(V) EPR signal and nicotinic acid hydroxylase activity of enzyme isolated from cells grown in selenium-deficient medium are barely detectable. In contrast, the EPR signals of the FeS clusters, the electronic absorption spectrum, the NADPH oxidase activity, and the chromatographic behavior are changed little and are typical of active selenium-containing enzyme. An EPR signal indicative of the presence of molybdenum in the selenium-deficient enzyme also is exhibited. From these results, we conclude that a dissociable selenium moiety is coordinated directly with molybdenum in the molybdopterin cofactor and, moreover, this selenium is essential for nicotinic acid hydroxylase activity. << Less
Proc Natl Acad Sci U S A 91:232-236(1994) [PubMed] [EuropePMC]
-
Properties of the selenium- and molybdenum-containing nicotinic acid hydroxylase from Clostridium barkeri.
Gladyshev V.N., Khangulov S.V., Stadtman T.C.
NADP(+)-coupled nicotinic acid hydroxylase (NAH) has been purified to near-homogeneity from Clostridium barkeri by an improved purification scheme that allowed the isolation of milligram amounts of enzyme of higher specific activity then previously reported. NAH is most stable at alkaline pH in th ... >> More
NADP(+)-coupled nicotinic acid hydroxylase (NAH) has been purified to near-homogeneity from Clostridium barkeri by an improved purification scheme that allowed the isolation of milligram amounts of enzyme of higher specific activity then previously reported. NAH is most stable at alkaline pH in the presence of glycerol. The protein which consists of four dissimilar subunits occurs in forms of different molecular masses. There are 5-7 Fe, 1 FAD, and 1 Mo per 160 kDa protein promoter. Mo in the enzyme is bound to a dinucleotide form of molybdopterin and is coordinated with selenium. Mo(V), flavin radical, and two Fe2S2 clusters could be observed with EPR spectroscopy. The Se cofactor which is essential for nicotinic acid hydroxylase activity could be released from NAH as a reactive low molecular weight compound by a number of denaturing procedures. Parallel losses of Se and catalytic activity were observed during purification and storage of the enzyme. Addition of sodium selenide or selenophosphate did not restore the catalytic activity of the enzyme. Instead, NAH is reversibly inactivated by these compounds and also by sulfide. Cyanide, a common inhibitor of Mo-containing hydroxylases, does not affect NAH catalytic activity. The "as isolated" enzyme exhibits a Mo(V) EPR signal (2.067 signal) that was detected at early stages of purification. NAH exhibits a high substrate specificity toward electron donor substrates. The ability of a nicotinate analog to reduce NAH (disappearance of 2.067 signal) correlates with the rate of oxidation of the analog in the standard assay mixture. The properties of NAH differentiate the enzyme from known Mo-containing hydroxylases. << Less