Reaction participants Show >> << Hide
- Name help_outline indole-3-pyruvate Identifier CHEBI:17640 Charge -1 Formula C11H8NO3 InChIKeyhelp_outline RSTKLPZEZYGQPY-UHFFFAOYSA-M SMILEShelp_outline [O-]C(=O)C(=O)Cc1c[nH]c2ccccc12 2D coordinates Mol file for the small molecule Search links Involved in 16 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 904 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (R)-3-(indol-3-yl)-2-oxobutanoate Identifier CHEBI:91180 Charge -1 Formula C12H10NO3 InChIKeyhelp_outline VSANSNPZLCXLRK-SSDOTTSWSA-M SMILEShelp_outline C12=CC=CC=C1C(=CN2)[C@@H](C)C(C([O-])=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-homocysteine Identifier CHEBI:57856 Charge 0 Formula C14H20N6O5S InChIKeyhelp_outline ZJUKTBDSGOFHSH-WFMPWKQPSA-N SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](CSCC[C@H]([NH3+])C([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 827 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:12112 | RHEA:12113 | RHEA:12114 | RHEA:12115 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
In vitro reconstitution of indolmycin biosynthesis reveals the molecular basis of oxazolinone assembly.
Du Y.L., Alkhalaf L.M., Ryan K.S.
The bacterial tryptophanyl-tRNA synthetase inhibitor indolmycin features a unique oxazolinone heterocycle whose biogenetic origins have remained obscure for over 50 years. Here we identify and characterize the indolmycin biosynthetic pathway, using systematic in vivo gene inactivation, in vitro bi ... >> More
The bacterial tryptophanyl-tRNA synthetase inhibitor indolmycin features a unique oxazolinone heterocycle whose biogenetic origins have remained obscure for over 50 years. Here we identify and characterize the indolmycin biosynthetic pathway, using systematic in vivo gene inactivation, in vitro biochemical assays, and total enzymatic synthesis. Our work reveals that a phenylacetate-CoA ligase-like enzyme Ind3 catalyzes an unusual ATP-dependent condensation of indolmycenic acid and dehydroarginine, driving oxazolinone ring assembly. We find that Ind6, which also has chaperone-like properties, acts as a gatekeeper to direct the outcome of this reaction. With Ind6 present, the normal pathway ensues. Without Ind6, the pathway derails to an unusual shunt product. Our work reveals the complete pathway for indolmycin formation and sets the stage for using genetic and chemoenzymatic methods to generate indolmycin derivatives as potential therapeutic agents. << Less
Proc. Natl. Acad. Sci. U.S.A. 112:2717-2722(2015) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Isolation and characterization of tryptophan transaminase and indolepyruvate C-methyltransferase. Enzymes involved in indolmycin biosynthesis in Streptomyces griseus.
Speedie M.K., Hornemann U., Floss H.G.
Two enzymes, tryptophan transaminase and indolepyruvate C-methyltransferase, which are active in the initial steps of the biosynthetic pathway of the antibiotic indolmycin, have been detected and partially purified from cell-free extracts of Streptomyces griseus. The transaminase has been purified ... >> More
Two enzymes, tryptophan transaminase and indolepyruvate C-methyltransferase, which are active in the initial steps of the biosynthetic pathway of the antibiotic indolmycin, have been detected and partially purified from cell-free extracts of Streptomyces griseus. The transaminase has been purified 3-fold by ammonium sulfate fractionation. At this stage of purification, it catalyzes the alpha-ketoglutarate and pyridoxal phosphate-dependent transamination of L-tryptophan, 3-methyltryptophan, L-pphenylalanine, and L-tyrosine. The C-methyltransferase catalyzes the transfer of a methyl group from S-adenosylmethionine to position 3 of the aliphatic side chain of indolepyruvate. No cofactors are required. The C-methyltransferase has been purified 110-fold by ammonium sulfate fractionation, Sephadex G-150 gel filtration, DEAE-Sephadex column chromotography, and Bio-Gel A-5m gel filtration. The enzyme has a broad pH optimum of 7.5 to 8.5. A molecular weight of 55,000 +/-5,000 has been determined by Sephadex G-200 gel filtration with reference proteins and a molecular weight of 58,000 +/-8,000 has been determined by sucrose density gradient centrifugation. The enzyme is relatively stable at temperatures of 0-5 degrees but is destroyed by freezing or by heating. The C-methyltransferase is inhibited strongly by the thiol reagents p-chloromercuribenzoate and N-ethylmaleimide. The Zn2+ and Fe2+ chelators 1,10-phenanthroline and 2,2'-bipyridine also inhibit the enzyme activity but EDTA does not. Michaelis-Menten constants have been determined for the 110-fold purified enzyme as 1.2 X 10(-5) M for S-adenosylmethionine and 4.8 X 10(-6) M for indolepyruvate. The enzyme activity in the crude extract is inhibited competitively by indolmycin (Ki equals 2.3 mM) and L-tryptophan (Ki equals 0.17 mM), but these effects are not observed after the enzyme has been passed through the Sephades G-150 column during purification. The crude extract is capable of methylating phenylpyruvate and p-hydroxyphenylpyruvate but this capability is lost upon purification of the indolepyruvate C-methyltransferase activity. No methylation of L-tryptophan occurs under the conditions used. << Less
-
The biosynthesis of indolmycin.
Hornemann U., Hurley L.H., Speedie M.K., Floss H.G.
-
Demonstration of a C-methylating enzyme in cell free extracts of indolmycin-producing Streptomyces griseus.
Hornemann U., Speedie M.K., Hurley L.H., Floss H.G.
Biochem Biophys Res Commun 39:594-599(1970) [PubMed] [EuropePMC]