Reaction participants Show >> << Hide
- Name help_outline D-mannitol Identifier CHEBI:16899 (Beilstein: 1721898; CAS: 69-65-8) help_outline Charge 0 Formula C6H14O6 InChIKeyhelp_outline FBPFZTCFMRRESA-KVTDHHQDSA-N SMILEShelp_outline OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,186 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline D-fructose Identifier CHEBI:37721 (Beilstein: 1680728; CAS: 57-48-7) help_outline Charge 0 Formula C6H12O6 InChIKeyhelp_outline RFSUNEUAIZKAJO-VRPWFDPXSA-N SMILEShelp_outline OC[C@H]1OC(O)(CO)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 26 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,116 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:12084 | RHEA:12085 | RHEA:12086 | RHEA:12087 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
The oxyanion hole of Pseudomonas fluorescens mannitol 2-dehydrogenase: a novel structural motif for electrostatic stabilization in alcohol dehydrogenase active sites.
Klimacek M., Nidetzky B.
The side chains of Asn191 and Asn300 constitute a characteristic structural motif of the active site of Pseudomonas fluorescens mannitol 2-dehydrogenase that lacks precedent in known alcohol dehydrogenases and resembles the canonical oxyanion binding pocket of serine proteases. We have used steady ... >> More
The side chains of Asn191 and Asn300 constitute a characteristic structural motif of the active site of Pseudomonas fluorescens mannitol 2-dehydrogenase that lacks precedent in known alcohol dehydrogenases and resembles the canonical oxyanion binding pocket of serine proteases. We have used steady-state and transient kinetic studies of the effects of varied pH and deuterium isotopic substitutions in substrates and solvent on the enzymatic rates to delineate catalytic consequences resulting from individual and combined replacements of the two asparagine residues by alanine. The rate constants for the overall hydride transfer to and from C-2 of mannitol, which were estimated as approximately 5 x 102 s-1 and approximately 1.5 x 103 s-1 in the wild-type enzyme respectively, were selectively slowed, between 540- and 2700-fold, in single-site mannitol 2-dehydrogenase mutants. These effects were additive in the corresponding doubly mutated enzyme, suggesting independent functioning of the two asparagine residues in catalysis. Partial disruption of the oxyanion hole in single-site mutants caused an upshift, by >or=1.2 pH units, in the kinetic pK of the catalytic acid-base Lys295 in the enzyme-NAD+-mannitol complex. The oxyanion hole of mannitol 2-dehydrogenase is suggested to drive a precatalytic conformational equilibrium at the ternary complex level in which the reactive group of the substrate is 'activated' for chemical conversion through its precise alignment with the unprotonated side chain of Lys295 (mannitol oxidation) and C=O bond polarization by the carboxamide moieties of Asn191 and Asn300 (fructose reduction). In the subsequent hydride transfer step, the two asparagine residues provide approximately 40 kJ/mol of electrostatic stabilization. << Less
-
Enzymes of mannitol metabolism in the human pathogenic fungus Aspergillus fumigatus--kinetic properties of mannitol-1-phosphate 5-dehydrogenase and mannitol 2-dehydrogenase, and their physiological implications.
Krahulec S., Armao G.C., Klimacek M., Nidetzky B.
The human pathogenic fungus Aspergillus fumigatus accumulates large amounts of intracellular mannitol to enhance its resistance against defense strategies of the infected host. To explore their currently unknown roles in mannitol metabolism, we studied A. fumigatus mannitol-1-phosphate 5-dehydroge ... >> More
The human pathogenic fungus Aspergillus fumigatus accumulates large amounts of intracellular mannitol to enhance its resistance against defense strategies of the infected host. To explore their currently unknown roles in mannitol metabolism, we studied A. fumigatus mannitol-1-phosphate 5-dehydrogenase (AfM1PDH) and mannitol 2-dehydrogenase (AfM2DH), each recombinantly produced in Escherichia coli, and performed a detailed steady-state kinetic characterization of the two enzymes at 25 °C and pH 7.1. Primary kinetic isotope effects resulting from deuteration of alcohol substrate or NADH showed that, for AfM1PDH, binding of D-mannitol 1-phosphate and NAD(+) is random, whereas D-fructose 6-phosphate binds only after NADH has bound to the enzyme. Binding of substrate and NAD(H) by AfM2DH is random for both D-mannitol oxidation and D-fructose reduction. Hydride transfer is rate-determining for D-mannitol 1-phosphate oxidation by AfM1PDH (k(cat) = 10.6 s(-1)) as well as D-fructose reduction by AfM2DH (k(cat) = 94 s(-1)). Product release steps control the maximum rates in the other direction of the two enzymatic reactions. Free energy profiles for the enzymatic reaction under physiological boundary conditions suggest that AfM1PDH primarily functions as a D-fructose-6-phosphate reductase, whereas AfM2DH acts in D-mannitol oxidation, thus establishing distinct routes for production and mobilization of mannitol in A. fumigatus. ATP, ADP and AMP do not affect the activity of AfM1PDH, suggesting the absence of flux control by cellular energy charge at the level of D-fructose 6-phosphate reduction. AfM1PDH is remarkably resistant to inactivation by heat (half-life at 40 °C of 20 h), consistent with the idea that formation of mannitol is an essential component of the temperature stress response of A. fumigatus. Inhibition of AfM1PDH might be a useful target for therapy of A. fumigatus infections. << Less