Enzymes
UniProtKB help_outline | 1,902 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline D-erythrose 4-phosphate Identifier CHEBI:16897 (Beilstein: 9129751) help_outline Charge -2 Formula C4H7O7P InChIKeyhelp_outline NGHMDNPXVRFFGS-IUYQGCFVSA-L SMILEShelp_outline [H]C(=O)[C@H](O)[C@H](O)COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 12 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,190 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 4-phospho-D-erythronate Identifier CHEBI:58766 (Beilstein: 5566997) help_outline Charge -3 Formula C4H6O8P InChIKeyhelp_outline ZCZXOHUILRHRQJ-PWNYCUMCSA-K SMILEShelp_outline O[C@H](COP([O-])([O-])=O)[C@@H](O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,120 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:12056 | RHEA:12057 | RHEA:12058 | RHEA:12059 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Involvement of the gapA- and epd (gapB)-encoded dehydrogenases in pyridoxal 5'-phosphate coenzyme biosynthesis in Escherichia coli K-12.
Yang Y., Zhao G., Man T.-K., Winkler M.E.
We show that epd (gapB) mutants lacking an erythrose 4-phosphate (E4P) dehydrogenase are impaired for growth on some media and contain less pyridoxal 5'-phosphate (PLP) and pyridoxamine 5'-phosphate (PMP) than their epd+ parent. In contrast to a previous report, we found that gapA epd double mutan ... >> More
We show that epd (gapB) mutants lacking an erythrose 4-phosphate (E4P) dehydrogenase are impaired for growth on some media and contain less pyridoxal 5'-phosphate (PLP) and pyridoxamine 5'-phosphate (PMP) than their epd+ parent. In contrast to a previous report, we found that gapA epd double mutants lacking the glyceraldehyde 3-phosphate and E4P dehydrogenases are auxotrophic for pyridoxine. These results implicate the GapA and Epd dehydrogenases in de novo PLP and PMP coenzyme biosynthesis. << Less
-
Comparative enzymatic properties of GapB-encoded erythrose-4-phosphate dehydrogenase of Escherichia coli and phosphorylating glyceraldehyde-3-phosphate dehydrogenase.
Boschi-Muller S., Azza S., Pollastro D., Corbier C., Branlant G.
GapB-encoded protein of Escherichia coli and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) share more than 40% amino acid identity. Most of the amino acids involved in the binding of cofactor and substrates to GAPDH are conserved in GapB-encoded protein. This enzyme shows an efficient non-phosp ... >> More
GapB-encoded protein of Escherichia coli and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) share more than 40% amino acid identity. Most of the amino acids involved in the binding of cofactor and substrates to GAPDH are conserved in GapB-encoded protein. This enzyme shows an efficient non-phosphorylating erythrose-4-phosphate dehydrogenase activity (Zhao, G., Pease, A. J., Bharani, N., and Winkler, M. E. (1995) J. Bacteriol. 177, 2804-2812) but a low phosphorylating glyceraldehyde-3-phosphate dehydrogenase activity, whereas GAPDH shows a high efficient phosphorylating glyceraldehyde-3-phosphate dehydrogenase activity and a low phosphorylating erythrose-4-phosphate dehydrogenase activity. To identify the structural factors responsible for these differences, comparative kinetic and binding studies have been carried out on both GapB-encoded protein of Escherichia coli and GAPDH of Bacillus stearothermophilus. The KD constant of GapB-encoded protein for NAD is 800-fold higher than that of GAPDH. The chemical mechanism of erythrose 4-phosphate oxidation by GapB-encoded protein is shown to proceed through a two-step mechanism involving covalent intermediates with Cys-149, with rates associated to the acylation and deacylation processes of 280 s-1 and 20 s-1, respectively. No isotopic solvent effect is observed suggesting that the rate-limiting step is not hydrolysis. The rate of oxidation of glyceraldehyde 3-phosphate is 0.12 s-1 and is hydride transfer limiting, at least 2000-fold less efficient compared with that of erythrose 4-phosphate. Thus, it can be concluded that it is only the structure of the substrates that prevails in forming a ternary complex enzyme-NAD-thiohemiacetal productive (or not) for hydride transfer in the acylation step. This conclusion is reinforced by the fact that the rate of oxidation for erythrose 4-phosphate by GAPDH is 0.1 s-1 and is limited by the acylation step, whereas glyceraldehyde 3-phosphate acylation is efficient and is not rate-determining (>/=800 s-1). Substituting Asn for His-176 on GapB-encoded protein, a residue postulated to facilitate hydride transfer as a base catalyst, decreases 40-fold the kcat of glyceraldehyde 3-phosphate oxidation. This suggests that the non-efficient positioning of the C-1 atom of glyceraldehyde 3-phosphate relative to the pyridinium of the cofactor within the ternary complex is responsible for the low catalytic efficiency. No phosphorylating activity on erythrose 4-phosphate with GapB-encoded protein is observed although the Pi site is operative as proven by the oxidative phosphorylation of glyceraldehyde 3-phosphate. Thus the binding of inorganic phosphate to the Pi site likely is not productive for attacking efficiently the thioacyl intermediate formed with erythrose 4-phosphate, whereas a water molecule is an efficient nucleophile for the hydrolysis of the thioacyl intermediate. Compared with glyceraldehyde-3-phosphate dehydrogenase activity, this corresponds to an activation of the deacylation step by >/=4.5 kcal.mol-1. Altogether these results suggest subtle structural differences between the active sites of GAPDH and GapB-encoded protein that could be revealed and/or modulated by the structure of the substrate bound. This also indicates that a protein engineering approach could be used to convert a phosphorylating aldehyde dehydrogenase into an efficient non-phosphorylating one and vice versa. << Less
-
Biochemical characterization of gapB-encoded erythrose 4-phosphate dehydrogenase of Escherichia coli K-12 and its possible role in pyridoxal 5'-phosphate biosynthesis.
Zhao G., Pease A.J., Bharani N., Winkler M.E.
One step in de novo pyridoxine (vitamin B6) and pyridoxal 5'-phosphate biosynthesis was predicted to be an oxidation catalyzed by an unidentified D-erythrose-4-phosphate dehydrogenase (E4PDH). To help identify this E4PDH, we purified the Escherichia coli K-12 gapA- and gapB-encoded dehydrogenases ... >> More
One step in de novo pyridoxine (vitamin B6) and pyridoxal 5'-phosphate biosynthesis was predicted to be an oxidation catalyzed by an unidentified D-erythrose-4-phosphate dehydrogenase (E4PDH). To help identify this E4PDH, we purified the Escherichia coli K-12 gapA- and gapB-encoded dehydrogenases to homogeneity and tested whether either uses D-erythrose-4-phosphate (E4P) as a substrate. gapA (gap1) encodes the major D-glyceraldehyde-3-phosphate dehydrogenase (GA3PDH). The function of gapB (gap2) is unknown, although it was suggested that gapB encodes a second form of GA3PDH or is a cryptic gene. We found that the gapB-encoded enzyme is indeed an E4PDH and not a second GA3PDH, whereas gapA-encoded GA3PDH used E4P poorly, if at all, as a substrate under the in vitro reaction conditions used in this study. The amino terminus of purified E4PDH matched the sequence predicted from the gapB DNA sequence. Purified E4PDH was a heat-stable tetramer with a native molecular mass of 132 kDa. E4PDH had an apparent Km value for E4P [Kmapp(E4P)] of 0.96 mM, an apparent kcat catalytic constant for E4P [kcatapp(E4P)] of 200 s-1, Kmapp(NAD+) of 0.074 mM, and kcatapp(NAD+) of 169 s-1 in steady-state reactions in which NADH formation was determined. From specific activities in crude extracts, we estimated that there are at least 940 E4PDH tetramer molecules per bacterium growing in minimal salts medium plus glucose at 37 degrees C. Thin-layer chromatography confirmed that the product of the E4PDH reaction was likely the aldonic acid 4-phosphoerythronate. To establish a possible role of E4PDH in pyridoxal 5'-phosphate biosynthesis, we showed that 4-phosphoerythronate is a likely substrate for the 2-hydroxy-acid dehydrogenase encoded by the pdxB gene. Implications of these findings in the evolution of GA3PDHs are also discussed. On the basis of these results, we propose renaming gapB as epd (for D-erythrose-4-phosphate dehydrogenase). << Less