Enzymes
UniProtKB help_outline | 122 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline (2E,6E)-farnesyl diphosphate Identifier CHEBI:175763 Charge -3 Formula C15H25O7P2 InChIKeyhelp_outline VWFJDQUYCIWHTN-YFVJMOTDSA-K SMILEShelp_outline CC(C)=CCC\C(C)=C\CC\C(C)=C\COP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 177 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline trichodiene Identifier CHEBI:15861 (CAS: 28624-60-4) help_outline Charge 0 Formula C15H24 InChIKeyhelp_outline YFLSTROSSKYYNK-CABCVRRESA-N SMILEShelp_outline CC1=CC[C@](C)(CC1)[C@@]1(C)CCCC1=C 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,139 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:12052 | RHEA:12053 | RHEA:12054 | RHEA:12055 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
M-CSA help_outline |
Publications
-
Pre-steady-state kinetic analysis of the trichodiene synthase reaction pathway.
Cane D.E., Chiu H.T., Liang P.H., Anderson K.S.
The pre-steady-state kinetics of the trichodiene synthase reaction were investigated by rapid chemical quench methods. The single-turnover rate was found to be 3.5-3.8 s-1, a rate 40 times faster than the steady-state catalytic rate (kcat = 0.09 s-1) for trichodiene synthase-catalyzed conversion o ... >> More
The pre-steady-state kinetics of the trichodiene synthase reaction were investigated by rapid chemical quench methods. The single-turnover rate was found to be 3.5-3.8 s-1, a rate 40 times faster than the steady-state catalytic rate (kcat = 0.09 s-1) for trichodiene synthase-catalyzed conversion of farnesyl diphosphate (FPP) to trichodiene at 15 degrees C. In a multiturnover experiment, a burst phase (kb = 4.2 s-1) corresponding to the accumulation of trichodiene on the surface of the enzyme was followed by a slower, steady-state release of products (klin = 0.086 s-1) which corresponds to kcat. These results strongly suggest that the release of trichodiene from the enzyme active site is the rate-limiting step in the overall reaction, while the consumption of FPP is the step which limits chemical catalysis at the active site. Single-turnover experiments with trichodiene synthase mutant D101E, for which the steady-state rate constant kcat is 1/3 of that of wild type, revealed that the mutation actually depresses the rate of FPP consumption by a factor of 100. The deuterium isotope effect on the consumption of [1-2H,1,2-14C]FPP was found to be 1.11 +/-0.06. Single turnover reactions of [1,2-14C]FPP catalyzed by trichodiene synthase were carried out at 4, 15, or 30 degrees C in an effort to provide direct observation of the proposed intermediate nerolidyl diphosphate (NPP). However, no NPP was detected, indicating that the conversion of NPP must be too fast to be observed within the detection limits of the assay. Taken together, these observations suggest that the isomerization of FPP to NPP is the step which limits the rate of chemical catalysis in the trichodiene synthase reaction pathway. << Less
-
X-ray crystal structures of D100E trichodiene synthase and its pyrophosphate complex reveal the basis for terpene product diversity.
Rynkiewicz M.J., Cane D.E., Christianson D.W.
The 2.4 A resolution X-ray crystal structure of D100E trichodiene synthase and the 2.6 A resolution structure of its complex with inorganic pyrophosphate are reported. The D100E amino acid substitution in the so-called "aspartate-rich" motif does not result in large changes to the overall structur ... >> More
The 2.4 A resolution X-ray crystal structure of D100E trichodiene synthase and the 2.6 A resolution structure of its complex with inorganic pyrophosphate are reported. The D100E amino acid substitution in the so-called "aspartate-rich" motif does not result in large changes to the overall structure of the enzyme. In the pyrophosphate complex, however, pyrophosphate coordinates two Mg(2+) ions at the mouth of the active site without causing large changes in the structure of the enzyme. This contrasts with pyrophosphate binding in the wild-type enzyme, where pyrophosphate coordinates three Mg(2+) ions and triggers a significant conformational change that closes the mouth of the active site and optimizes packing density in the enzyme-substrate complex. The attenuation of active site closure in D100E trichodiene synthase compromises enzyme-substrate packing density and confers additional spatial and conformational degrees of freedom on the substrate and carbocation intermediates, which in turn results in the formation of five alternate sesquiterpene products in addition to trichodiene. By extension, then, the diversity of terpene cyclases in biology may have evolved in part by amino acid substitutions that fine-tune structural changes dependent on metal-diphosphate complexation that govern the formation of the active site template and enzyme-substrate packing density. << Less
-
Isolation and nucleotide sequence of a sesquiterpene cyclase gene from the trichothecene-producing fungus Fusarium sporotrichioides.
Hohn T.M., Beremand P.D.
The trichodiene synthase gene (Tox5) has been isolated from the fungus Fusarium sporotrichioides, and its nucleotide (nt) sequence determined. A lambda gt11 library of F. sporotrichioides DNA was screened with antiserum against trichodiene synthase (TS). DNA fragments were isolated which encode a ... >> More
The trichodiene synthase gene (Tox5) has been isolated from the fungus Fusarium sporotrichioides, and its nucleotide (nt) sequence determined. A lambda gt11 library of F. sporotrichioides DNA was screened with antiserum against trichodiene synthase (TS). DNA fragments were isolated which encode a portion of the Tox5 gene. In subsequent screening of the library we employed one of these DNAs as a probe and identified several recombinant phage containing the entire Tox5 gene. The gene consists of a 1182-nt open reading frame (ORF) which contains a 60-nt intron and specifies a Mr 43,999 protein. The deduced amino acid sequence of the ORF was identical to sequences determined for several CNBr peptides from purified TS. Southern and Northern analyses indicated that the Tox5 gene is present in a single copy and is transcribed into an mRNA of about 1450 nt. Upstream from the start codon, 'TATA'-like sequences and a short repeated sequence resembling the 'CCAAT' box were observed. The primary structure described for TS is the first such report for a member of the terpene cyclase group of enzymes. << Less
-
Molecular recognition of the substrate diphosphate group governs product diversity in trichodiene synthase mutants.
Vedula L.S., Rynkiewicz M.J., Pyun H.J., Coates R.M., Cane D.E., Christianson D.W.
The X-ray crystal structures of Y305F trichodiene synthase and its complex with coproduct inorganic pyrophosphate (PP(i)) and of Y305F and D100E trichodiene synthases in ternary complexes with PP(i) and aza analogues of the bisabolyl carbocation intermediate are reported. The Y305F substitution in ... >> More
The X-ray crystal structures of Y305F trichodiene synthase and its complex with coproduct inorganic pyrophosphate (PP(i)) and of Y305F and D100E trichodiene synthases in ternary complexes with PP(i) and aza analogues of the bisabolyl carbocation intermediate are reported. The Y305F substitution in the basic D(302)RRYR motif does not cause large changes in the overall structure in comparison with the wild-type enzyme in either the uncomplexed enzyme or its complex with PP(i). However, the loss of the Y305F-PP(i) hydrogen bond appears to be compensated by a very slight shift in the position of the side chain of R304. The putative bisabolyl carbocation mimic, R-azabisabolene, binds in a conformation and orientation that does not appear to mimic that of the actual carbocation intermediate, suggesting that the avid inhibition by R- and S-azabisabolenes arises more from favorable electrostatic interactions with PP(i) rather than any special resemblance to a reaction intermediate. Greater enclosed active-site volumes result from the Y305F and D100E mutations that appear to confer greater variability in ligand-binding conformations and orientations, which results in the formation of aberrant cyclization products. Because the binding conformations and orientations of R-azabisabolene to Y305F and D100E trichodiene synthases do not correspond to binding conformations required for product formation and because the binding conformations and orientations of diverse substrate and carbocation analogues to other cyclases such as 5-epi-aristolochene synthase and bornyl diphosphate synthase generally do not correspond to catalytically productive complexes, we conclude that the formation of transient carbocation intermediates in terpene cyclization reactions is generally under kinetic rather than thermodynamic control. << Less
-
Studies of the cryptic allylic pyrophosphate isomerase activity of trichodiene synthase using the anomalous substrate 6,7-dihydrofarnesyl pyrophosphate.
Cane D.E., Pawlak J.L., Horak R.M.
Two enantiomeric analogues of farnesyl pyrophosphate (1) were tested as inhibitors and anomalous substrates of trichodiene synthase, which catalyzes the cyclization of trans,trans-farnesyl pyrophosphate (1) to the sesquiterpene hydrocarbon trichodiene (2). The reaction has been shown to involve pr ... >> More
Two enantiomeric analogues of farnesyl pyrophosphate (1) were tested as inhibitors and anomalous substrates of trichodiene synthase, which catalyzes the cyclization of trans,trans-farnesyl pyrophosphate (1) to the sesquiterpene hydrocarbon trichodiene (2). The reaction has been shown to involve preliminary isomerization of 1 to the tertiary allylic isomer nerolidyl pyrophosphate (3) which is cyclized without detectable release of the intermediate from the active site of the cyclase. Both (7S)-trans-6,7-dihydrofarnesyl pyrophosphate (7a) and (7R)-trans-6,7-dihydrofarnesyl pyrophosphate (7b), prepared from (3R)- and (3S)-citronellol (9a and 9b), respectively, proved to be modest competitive inhibitors of trichodiene synthase. The values of Ki(7a), 395 nM, and Ki(7b), 220 nM, were 10-15 times the observed Km for 1 and half the Ki of inorganic pyrophosphate alone. Incubation of either 7a or 7b with trichodiene synthase resulted in formation of a mixture of products which by radio/gas-liquid chromatographic and GC/selected ion mass spectrometric analysis was shown to be composed of 80-85% isomeric trienes 19-21 and 15-20% allylic alcohols 12 and 18. Examination of the water-soluble products resulting from incubation of 7a also revealed the generation of 24% of the isomeric cis-6,7-dihydrofarnesyl pyrophosphate (26). The combined rate of formation of anomalous alcoholic and olefinic products was 10% the Vmax determined for the conversion of 1 to 2. The results can be explained by initial enzyme-catalyzed isomerization of dihydrofarnesyl pyrophosphate (7) to the corresponding tertiary allylic isomer dihydronerolidyl pyrophosphate (8). Since the latter intermediate is unable to cyclize due to the absence of the 6,7-double bond, ionization of 8 and quenching of the resulting ion pair by deprotonation, capture of water, or collapse to the isomeric primary pyrophosphate esters will generate the observed spectrum of anomalous products. << Less
-
Structure of trichodiene synthase from Fusarium sporotrichioides provides mechanistic inferences on the terpene cyclization cascade.
Rynkiewicz M.J., Cane D.E., Christianson D.W.
The x-ray crystal structure of recombinant trichodiene synthase from Fusarium sporotrichioides has been determined to 2.5-A resolution, both unliganded and complexed with inorganic pyrophosphate. This reaction product coordinates to three Mg(2+) ions near the mouth of the active site cleft. A comp ... >> More
The x-ray crystal structure of recombinant trichodiene synthase from Fusarium sporotrichioides has been determined to 2.5-A resolution, both unliganded and complexed with inorganic pyrophosphate. This reaction product coordinates to three Mg(2+) ions near the mouth of the active site cleft. A comparison of the liganded and unliganded structures reveals a ligand-induced conformational change that closes the mouth of the active site cleft. Binding of the substrate farnesyl diphosphate similarly may trigger this conformational change, which would facilitate catalysis by protecting reactive carbocationic intermediates in the cyclization cascade. Trichodiene synthase also shares significant structural similarity with other sesquiterpene synthases despite a lack of significant sequence identity. This similarity indicates divergence from a common ancestor early in the evolution of terpene biosynthesis. << Less
Proc. Natl. Acad. Sci. U.S.A. 98:13543-13548(2001) [PubMed] [EuropePMC]