Enzymes
UniProtKB help_outline | 1,826 proteins |
Reaction participants Show >> << Hide
- Name help_outline a triacylglycerol Identifier CHEBI:17855 Charge 0 Formula C6H5O6R3 SMILEShelp_outline [*]C(=O)OCC(COC([*])=O)OC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 131 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a diacylglycerol Identifier CHEBI:18035 Charge 0 Formula C5H6O5R2 SMILEShelp_outline [*]OCC(CO[*])O[*] 2D coordinates Mol file for the small molecule Search links Involved in 394 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a fatty acid Identifier CHEBI:28868 Charge -1 Formula CO2R SMILEShelp_outline [O-]C([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,526 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:12044 | RHEA:12045 | RHEA:12046 | RHEA:12047 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
Reactome help_outline |
Related reactions help_outline
Specific form(s) of this reaction
More general form(s) of this reaction
Publications
-
Molecular characterization of human ABHD2 as TAG lipase and ester hydrolase.
M N.K., V B S C T., G K V., B C.S., Guntupalli S., J S B.
Alterations in lipid metabolism have been progressively documented as a characteristic property of cancer cells. Though, human ABHD2 gene was found to be highly expressed in breast and lung cancers, its biochemical functionality is yet uncharacterized. In the present study we report, human ABHD2 a ... >> More
Alterations in lipid metabolism have been progressively documented as a characteristic property of cancer cells. Though, human ABHD2 gene was found to be highly expressed in breast and lung cancers, its biochemical functionality is yet uncharacterized. In the present study we report, human ABHD2 as triacylglycerol (TAG) lipase along with ester hydrolysing capacity. Sequence analysis of ABHD2 revealed the presence of conserved motifs G(205)XS(207)XG(209) and H(120)XXXXD(125) Phylogenetic analysis showed homology to known lipases, Drosophila melanogaster CG3488. To evaluate the biochemical role, recombinant ABHD2 was expressed in Saccharomyces cerevisiae using pYES2/CT vector and His-tag purified protein showed TAG lipase activity. Ester hydrolase activity was confirmed with pNP acetate, butyrate and palmitate substrates respectively. Further, the ABHD2 homology model was built and the modelled protein was analysed based on the RMSD and root mean square fluctuation (RMSF) of the 100 ns simulation trajectory. Docking the acetate, butyrate and palmitate ligands with the model confirmed covalent binding of ligands with the Ser(207) of the GXSXG motif. The model was validated with a mutant ABHD2 developed with alanine in place of Ser(207) and the docking studies revealed loss of interaction between selected ligands and the mutant protein active site. Based on the above results, human ABHD2 was identified as a novel TAG lipase and ester hydrolase. << Less
Biosci. Rep. 36:0-0(2016) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase.
Zimmermann R., Strauss J.G., Haemmerle G., Schoiswohl G., Birner-Gruenberger R., Riederer M., Lass A., Neuberger G., Eisenhaber F., Hermetter A., Zechner R.
Mobilization of fatty acids from triglyceride stores in adipose tissue requires lipolytic enzymes. Dysfunctional lipolysis affects energy homeostasis and may contribute to the pathogenesis of obesity and insulin resistance. Until now, hormone-sensitive lipase (HSL) was the only enzyme known to hyd ... >> More
Mobilization of fatty acids from triglyceride stores in adipose tissue requires lipolytic enzymes. Dysfunctional lipolysis affects energy homeostasis and may contribute to the pathogenesis of obesity and insulin resistance. Until now, hormone-sensitive lipase (HSL) was the only enzyme known to hydrolyze triglycerides in mammalian adipose tissue. Here, we report that a second enzyme, adipose triglyceride lipase (ATGL), catalyzes the initial step in triglyceride hydrolysis. It is interesting that ATGL contains a "patatin domain" common to plant acyl-hydrolases. ATGL is highly expressed in adipose tissue of mice and humans. It exhibits high substrate specificity for triacylglycerol and is associated with lipid droplets. Inhibition of ATGL markedly decreases total adipose acyl-hydrolase activity. Thus, ATGL and HSL coordinately catabolize stored triglycerides in adipose tissue of mammals. << Less
Science 306:1383-1386(2004) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
The TGL2 gene of Saccharomyces cerevisiae encodes an active acylglycerol lipase located in the mitochondria.
Ham H.J., Rho H.J., Shin S.K., Yoon H.J.
The Saccharomyces cerevisiae Tgl2 protein shows sequence homology to Pseudomonas triacylglycerol (TAG) lipases, but its role in the yeast lipid metabolism is not known. Using hemagglutinin-tagged Tgl2p purified from yeast, we report that this protein carries a significant lipolytic activity toward ... >> More
The Saccharomyces cerevisiae Tgl2 protein shows sequence homology to Pseudomonas triacylglycerol (TAG) lipases, but its role in the yeast lipid metabolism is not known. Using hemagglutinin-tagged Tgl2p purified from yeast, we report that this protein carries a significant lipolytic activity toward long-chain TAG. Importantly, mutant hemagglutinin-Tgl2p(S144A), which contains alanine 144 in place of serine 144 in the lipase consensus sequence (G/A)XSXG exhibits no such activity. Although cellular TAG hydrolysis is reduced in the tgl2 deletion mutant, overproduction of Tgl2p in this mutant leads to an increase in TAG degradation in the presence of fatty acid synthesis inhibitor cerulenin, but that of Tgl2p(S144A) does not. This result demonstrates the lipolytic function of Tgl2p in yeast. Although other yeast TAG lipases are localized to lipid particles, Tgl2p is enriched in the mitochondria. The mitochondrial fraction purified from the TGL2-overexpressing yeast shows a strong lipolytic activity, which was absent in the tgl2 deletion mutant. Therefore, we conclude that Tgl2p is a functional lipase of the yeast mitochondria. By analyzing phenotypic effects of TGL2-deficient yeast, we also find that lipolysis-competent Tgl2p is required for the viability of cells treated with antimitotic drug. The addition of oleic acid, the product of Tgl2p-catalyzed lipolysis, fully complements the antimitotic drug sensitivity of the tgl2 null mutation. Thus, we propose that the mitochondrial Tgl2p-dependent lipolysis is crucial for the survival of cells under antimitotic drug treatment. << Less
J. Biol. Chem. 285:3005-3013(2010) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Human hepatic and lipoprotein lipase: the loop covering the catalytic site mediates lipase substrate specificity.
Dugi K.A., Dichek H.L., Santamarina-Fojo S.
Hepatic lipase (HL) and lipoprotein lipase (LPL) are key enzymes that mediate the hydrolysis of triglycerides (TG) and phospholipids (PL) present in circulating plasma lipoproteins. Relative to triacylglycerol hydrolysis, HL displays higher phospholipase activity than LPL. The structural basis for ... >> More
Hepatic lipase (HL) and lipoprotein lipase (LPL) are key enzymes that mediate the hydrolysis of triglycerides (TG) and phospholipids (PL) present in circulating plasma lipoproteins. Relative to triacylglycerol hydrolysis, HL displays higher phospholipase activity than LPL. The structural basis for this difference in substrate specificity has not been definitively established. We recently demonstrated that the 22-amino acid loops ("lids") covering the catalytic sites of LPL and HL are critical for the interaction with lipid substrate (Dugi, K.A., Dichek, H.L., Talley, G.D., Brewer, H.B., Jr., and Santamarina-Fojo, S. (1992) J. Biol. Chem. 267, 25086-25091). To determine whether the lipase lid plays a role in conferring the different substrate specificities of HL and LPL, we have generated four chimeric lipases. Characterization of these chimeric enzymes using TG (triolein and tributyrin) or PL (dioleoylphosphatidylcholine (DOPC) vesicles, DOPC proteoliposomes, and DOPC-mixed liposomes) substrates demonstrated marked differences between their relative PL/TG hydrolyzing activities. Chimeric LPL containing the lid of HL had reduced triolein hydrolyzing activity (49% of the wild type), but increased phospholipase activity in DOPC vesicle, DOPC proteoliposome, and DOPC-mixed liposome assay systems (443, 628, and 327% of wild-type LPL, respectively). In contrast, chimeric HL containing the LPL lid was more active against triolein (123% of the wild type) and less active against DOPC (23, 0, and 30%, respectively) than normal HL. Similar results were obtained when the lipase lids were exchanged in chimeric enzymes containing the NH2-terminal end of LPL and the COOH-terminal domain of HL. Exchange of the LPL and HL lids resulted in a reversal of the phospholipase/neutral lipase ratio, establishing the important role of this region in mediating substrate specificity. In summary, the lid covering the catalytic domains in LPL and HL plays a crucial role in determining lipase substrate specificity. The lid of LPL confers preferential triglyceride hydrolysis, whereas the lid of HL augments phospholipase activity. This study provides new insight into the structural basis for the observed in vivo differences in LPL and HL function. << Less
J. Biol. Chem. 270:25396-25401(1995) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis.
Haemmerle G., Zimmermann R., Hayn M., Theussl C., Waeg G., Wagner E., Sattler W., Magin T.M., Wagner E.F., Zechner R.
Hormone-sensitive lipase (HSL) is expressed predominantly in white and brown adipose tissue where it is believed to play a crucial role in the lipolysis of stored triglycerides (TG), thereby providing the body with energy substrate in the form of free fatty acids (FFA). From in vitro assays, HSL i ... >> More
Hormone-sensitive lipase (HSL) is expressed predominantly in white and brown adipose tissue where it is believed to play a crucial role in the lipolysis of stored triglycerides (TG), thereby providing the body with energy substrate in the form of free fatty acids (FFA). From in vitro assays, HSL is known to hydrolyze TG, diglycerides (DG), cholesteryl esters, and retinyl esters. In the current study we have generated HSL knock-out mice and demonstrate three lines of evidence that HSL is instrumental in the catabolism of DG in vivo. First, HSL deficiency in mice causes the accumulation of DG in white adipose tissue, brown adipose tissue, skeletal muscle, cardiac muscle, and testis. Second, when tissue extracts were used in an in vitro lipase assay, a reduced FFA release and the accumulation of DG was observed in HSL knock-out mice which did not occur when tissue extracts from control mice were used. Third, in vitro lipolysis experiments with HSL-deficient fat pads demonstrated that the isoproterenol-stimulated release of FFA was decreased and DG accumulated intracellularly resulting in the essential absence of the isoproterenol-stimulated glycerol formation typically observed in control fat pads. Additionally, the absence of HSL in white adipose tissue caused a shift of the fatty acid composition of the TG moiety toward increased long chain fatty acids implying a substrate specificity of the enzyme in vivo. From these in vivo results we conclude that HSL is the rate-limiting enzyme for the cellular catabolism of DG in adipose tissue and muscle. << Less
J Biol Chem 277:4806-4815(2002) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Purification and characterization of a catalytic domain of rat intestinal phospholipase B/lipase associated with brush border membranes.
Tojo H., Ichida T., Okamoto M.
A brush border membrane-associated phospholipase B/lipase was solubilized from the distal two-thirds of rat small intestine by autolysis during storage at -35 degrees C over 1 month, and then the enzyme was purified to homogeneity and characterized enzymatically and structurally. The purified enzy ... >> More
A brush border membrane-associated phospholipase B/lipase was solubilized from the distal two-thirds of rat small intestine by autolysis during storage at -35 degrees C over 1 month, and then the enzyme was purified to homogeneity and characterized enzymatically and structurally. The purified enzyme exhibited broad substrate specificity including esterase, phospholipase A2, lysophospholipase, and lipase activities. SDS-gel electrophoretic and reverse-phase high performance liquid chromatographic analyses demonstrated that a single enzyme catalyzes these activities. It preferred hydrolysis at the sn-2 position of diacylphospholipid and diacylglycerol without strict stereoselectivity, whereas it apparently exhibited no positional specificity toward triacylglycerol. Diisopropyl fluorophosphate, an irreversible inhibitor of serine esterases and lipases inhibited purified enzyme. When the position of enzyme on SDS-gel electrophoresis under the non-reducing conditions was determined by assaying the activity eluted from sliced gels, brush border membrane-associated enzyme corresponded to a approximately 150-kDa protein; autolysis gave a 35-kDa product, in agreement with the results of immunoblot analysis. The purified 35-kDa enzyme consisted of a 14-kDa peptide and a glycosylated 21-kDa peptide. Their NH2-terminal amino acid sequences were determined and found in the second repeat of 161-kDa phospholipase B/lipase with 4-fold tandem repeats of approximately 38 kDa each, which we cloned and sequenced in the accompanying paper (Takemori, H., Zolotaryov, F., Ting, L., Urbain, T., Komatsubara, T., Hatano, O., Okamoto, M., and Tojo, H. (1988) J. Biol. Chem. 273, 2222-2231). These results indicate that the purified enzyme is the catalytic domain derived from the second repeat of brush border membrane-associated phospholipase B/lipase. << Less
J. Biol. Chem. 273:2214-2221(1998) [PubMed] [EuropePMC]
This publication is cited by 23 other entries.
-
YMR313c/TGL3 encodes a novel triacylglycerol lipase located in lipid particles of Saccharomyces cerevisiae.
Athenstaedt K., Daum G.
Previous work from our laboratory (Athenstaedt, K., Zweytick, D., Jandrositz, A., Kohlwein, S. D., and Daum, G. (1999) J. Bacteriol. 181, 6441-6448) showed that the gene product of YMR313c (named Tgl3p) is a component of yeast lipid particles, and deletion of this gene led to an increase in the ce ... >> More
Previous work from our laboratory (Athenstaedt, K., Zweytick, D., Jandrositz, A., Kohlwein, S. D., and Daum, G. (1999) J. Bacteriol. 181, 6441-6448) showed that the gene product of YMR313c (named Tgl3p) is a component of yeast lipid particles, and deletion of this gene led to an increase in the cellular level of triacylglycerols (TAG). These observations suggested that TGL3 may encode a TAG lipase of Saccharomyces cerevisiae. Here we demonstrate by cell fractionation and by microscopic inspection of a strain bearing a Tgl3p-GFP hybrid that this polypeptide is highly enriched in the lipid particle fraction but virtually absent from other organelles. The entire TAG lipase activity of lipid particles is attributed to Tgl3p, because the activity in this organelle is completely absent in a Deltatgl3 deletion mutant, whereas it is significantly enhanced in a strain overexpressing Tgl3p. A His6-tagged Tgl3p hybrid purified close to homogeneity from a yeast strain overexpressing this fusion protein exhibited high TAG lipase activity. Most importantly, experiments in vivo using the fatty acid synthesis inhibitor cerulenin demonstrated that deletion of TGL3 resulted in a decreased mobilization of TAG from lipid particles. The amino acid sequence deduced from the open reading frame YMR313c contains the consensus sequence motif GXSXG typical for lipolytic enzymes. Otherwise, Tgl3p has no significant sequence homology to other lipases identified so far. In summary, our data identified Tgl3p as a novel yeast TAG lipase at the molecular level and by function in vivo and in vitro. << Less
-
Purification and characterization of bovine pancreatic bile salt-activated lipase.
Tanaka H., Mierau I., Ito F.
An enzyme with lipase and esterase activity was purified from bovine pancreas. Furthermore, a non-radioactive lipase assay was developed which is 100 times more sensitive than the conventional methods and allowed the characterization of the lipase activity of the enzyme. The lipase activity increa ... >> More
An enzyme with lipase and esterase activity was purified from bovine pancreas. Furthermore, a non-radioactive lipase assay was developed which is 100 times more sensitive than the conventional methods and allowed the characterization of the lipase activity of the enzyme. The lipase activity increased 42 times in the presence of 10 mM sodium taurocholate, which for the first time provides direct evidence that a bile salt-activated lipase (bp-BAL) was isolated from bovine pancreas. This conclusion is further supported by the fact that the N-terminal amino acid sequence of this lipase/esterase is 88% homologous to human milk BAL and human pancreatic BAL. Staining with various lectins showed that bp-BAL is a glycoprotein which contains fucose residues. Previously from bovine pancreas a lysophospholipase has been purified and a gene was cloned and sequenced encoding an enzyme with cholesterol esterase/lysophospholipase activity. Comparison of the N-terminal amino acid sequence of bp-BAL with the deduced amino acid sequence of the latter revealed that they are identical. Furthermore, the molecular weight of the purified bp-BAL of 63,000, as estimated by SDS-PAGE, is very similar to that of the purified lysophospholipase (65,000) and to the theoretical molecular weight of 65,147 of the cholesterol esterase/lysophospholipase. These data suggest that these three enzymes are one and the same. << Less
-
Expression, regulation, and triglyceride hydrolase activity of Adiponutrin family members.
Lake A.C., Sun Y., Li J.-L., Kim J.E., Johnson J.W., Li D., Revett T., Shih H.H., Liu W., Paulsen J.E., Gimeno R.E.
Adiponutrin and a related protein, adipocyte triglyceride lipase (ATGL; also known as Desnutrin), were recently described as adipocyte-specific proteins with lipid hydrolase activity. Using bioinformatics, we identified three additional Adiponutrin family members (GS2, GS2-Like, and PNPLA1). Here, ... >> More
Adiponutrin and a related protein, adipocyte triglyceride lipase (ATGL; also known as Desnutrin), were recently described as adipocyte-specific proteins with lipid hydrolase activity. Using bioinformatics, we identified three additional Adiponutrin family members (GS2, GS2-Like, and PNPLA1). Here, we report on the expression, regulation, and activity of GS2 and GS2-Like compared with Adiponutrin and Desnutrin/ATGL. GS2-Like is expressed and regulated in a manner similar to Adiponutrin; however, the absolute levels of mRNA are significantly lower than those of Adiponutrin or Desnutrin/ATGL. GS2 transcripts were identified only in humans and are highly expressed in adipose as well as other tissues. All four proteins show lipase activity in vitro, which is dependent on the presence of the active site serine for Adiponutrin, Desnutrin/ATGL, and GS2. Overexpression of Desnutrin/ATGL, GS2, and GS2-Like, but not Adiponutrin, decreases intracellular triglyceride levels. This is consistent with a function for Desnutrin/ATGL, GS2, and GS2-Like in lipolysis, but not for Adiponutrin. Consistent with previously reported data, Desnutrin/ATGL is upregulated by fasting in adipose tissue, whereas Adiponutrin is downregulated. Additionally, Adiponutrin and GS2-Like, but not Desnutrin/ATGL, are strongly induced in the liver of ob/ob mice. Our data support distinct functions for Adiponutrin and Desnutrin/ATGL and raise the possibility that GS2 may contribute significantly to lipolysis in human adipose tissue. << Less
-
Characterization of the lipolytic activity of endothelial lipase.
McCoy M.G., Sun G.-S., Marchadier D., Maugeais C., Glick J.M., Rader D.J.
Endothelial lipase (EL) is a new member of the triglyceride lipase gene family previously reported to have phospholipase activity. Using radiolabeled lipid substrates, we characterized the lipolytic activity of this enzyme in comparison to lipoprotein lipase (LPL) and hepatic lipase (HL) using con ... >> More
Endothelial lipase (EL) is a new member of the triglyceride lipase gene family previously reported to have phospholipase activity. Using radiolabeled lipid substrates, we characterized the lipolytic activity of this enzyme in comparison to lipoprotein lipase (LPL) and hepatic lipase (HL) using conditioned medium from cells infected with recombinant adenoviruses encoding each of the enzymes. In the absence of serum, EL had clearly detectable triglyceride lipase activity. Both the triglyceride lipase and phospholipase activities of EL were inhibited in a dose-dependent fashion by the addition of serum. The ratio of triglyceride lipase to phospholipase activity of EL was 0.65, compared with ratios of 24.1 for HL and 139.9 for LPL, placing EL at the opposite end of the lipolytic spectrum from LPL. Neither lipase activity of EL was influenced by the addition of apolipoprotein C-II (apoC-II), indicating that EL, like HL, does not require apoC-II for activation. Like LPL but not HL, both lipase activities of EL were inhibited by 1 M NaCl. The relative ability of EL, versus HL and LPL, to hydrolyze lipids in isolated lipoprotein fractions was also examined using generation of FFAs as an end point. As expected, based on the relative triglyceride lipase activities of the three enzymes, the triglyceride-rich lipoproteins, chylomicrons, VLDL, and IDL, were efficiently hydrolyzed by LPL and HL. EL hydrolyzed HDL more efficiently than the other lipoprotein fractions, and LDL was a poor substrate for all of the enzymes. << Less
J. Lipid Res. 43:921-929(2002) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Saccharomyces cerevisiae lipid droplet associated enzyme Ypr147cp shows both TAG lipase and ester hydrolase activities.
Naresh Kumar M., Thunuguntla V.B.S.C., Chandra Sekhar B., Bondili J.S.
Saccharomyces cerevisiae Ypr147cp was found localized to lipid droplets but the physiological role of Ypr147cp remains unknown. Sequence analysis of Ypr147cp revealed an α/β hydrolase domain along with the conserved GXSXG lipase motif. Recombinant Ypr147cp showed both triacylglycerol lipase and es ... >> More
Saccharomyces cerevisiae Ypr147cp was found localized to lipid droplets but the physiological role of Ypr147cp remains unknown. Sequence analysis of Ypr147cp revealed an α/β hydrolase domain along with the conserved GXSXG lipase motif. Recombinant Ypr147cp showed both triacylglycerol lipase and ester hydrolase activities. Knock out of YPR147C led to accumulation of TAG in ypr147cΔ when compared to wild type (WT). In addition, transmission electron microscopic analysis of ypr147cΔ cells revealed a greater number of lipid bodies, justifying the increase in TAG content, and the phenotype was rescued upon overexpression of YPR147C in ypr147cΔ. Moreover, the lipid profiling confirmed the accumulation of fatty acids derived from neutral and phospholipids in ypr147cΔ cells. Based on these results, Ypr147cp is identified as a lipid droplet associated triacylglycerol lipase along with an ester hydrolyzing capacity. << Less
J. Gen. Appl. Microbiol. 64:76-83(2018) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Tgl4p and Tgl5p, two triacylglycerol lipases of the yeast Saccharomyces cerevisiae are localized to lipid particles.
Athenstaedt K., Daum G.
Triacylglycerol (TAG) lipases are required for mobilization of TAG stored in lipid particles. Recently, Tgl3p was identified as a major TAG lipase of the yeast Saccharomyces cerevisiae (Athenstaedt, K., and Daum, G. (2003) J. Biol. Chem. 278, 23317-23323). Here, we report the identification of Tgl ... >> More
Triacylglycerol (TAG) lipases are required for mobilization of TAG stored in lipid particles. Recently, Tgl3p was identified as a major TAG lipase of the yeast Saccharomyces cerevisiae (Athenstaedt, K., and Daum, G. (2003) J. Biol. Chem. 278, 23317-23323). Here, we report the identification of Tgl4p and Tgl5p as additional TAG lipases of the yeast. Both polypeptides, encoded by open reading frames YKR089c/TGL4 and YOR081c/TGL5, share 30 and 26% homology, respectively, to Tgl3p. Cell fractionation experiments and microscopic inspection of strains bearing Tgl4p-GFP and Tgl5p-GFP hybrids demonstrated that both proteins are localized to lipid particles similar to Tgl3p. A 1.7-fold increased amount of TAG enriched in myristic and palmitic acids and the reduced mobilization rate of TAG from tgl4Delta in the presence of the fatty acid synthesis inhibitor cerulenin demonstrated the lipolytic function of Tgl4p in vivo. In contrast, neither the total amount of TAG nor the TAG mobilization rate after addition of cerulenin was affected in tgl5Delta cells. However, the enrichment of C26:0 esterified to TAG of tgl5Delta, an additional increase of TAG in the tgl4Deltatgl5Delta double deletion mutant compared with tgl4Delta, and the impairment of TAG mobilization in the tgl4Deltatgl5Delta strain in the presence of cerulenin suggested that also Tgl5p functions as a TAG lipase in vivo. Most importantly, the purified His(6)-tagged Tgl4p and Tgl5p hybrids exhibited TAG lipase activity demonstrating their function in vitro. In summary, our data obtained by biochemical, molecular, and cell biological analyses unambiguously identified Tgl4p and Tgl5p as novel TAG lipases of yeast lipid particles with certain enzymatic specificities. << Less