Enzymes
UniProtKB help_outline | 4 proteins |
Reaction participants Show >> << Hide
- Name help_outline (2R,3S)-homoisocitrate Identifier CHEBI:15404 Charge -3 Formula C7H7O7 InChIKeyhelp_outline OEJZZCGRGVFWHK-WVZVXSGGSA-K SMILEShelp_outline O[C@H]([C@H](CCC([O-])=O)C([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,186 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2-oxoadipate Identifier CHEBI:57499 Charge -2 Formula C6H6O5 InChIKeyhelp_outline FGSBNBBHOZHUBO-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CCCC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 11 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (Beilstein: 1900390; CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 997 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,116 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:11900 | RHEA:11901 | RHEA:11902 | RHEA:11903 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Methanogen homoaconitase catalyzes both hydrolyase reactions in coenzyme B biosynthesis.
Drevland R.M., Jia Y., Palmer D.R.J., Graham D.E.
Homoaconitase enzymes catalyze hydrolyase reactions in the alpha-aminoadipate pathway for lysine biosynthesis or the 2-oxosuberate pathway for methanogenic coenzyme B biosynthesis. Despite the homology of this iron-sulfur protein to aconitase, previously studied homoaconitases catalyze only the hy ... >> More
Homoaconitase enzymes catalyze hydrolyase reactions in the alpha-aminoadipate pathway for lysine biosynthesis or the 2-oxosuberate pathway for methanogenic coenzyme B biosynthesis. Despite the homology of this iron-sulfur protein to aconitase, previously studied homoaconitases catalyze only the hydration of cis-homoaconitate to form homoisocitrate rather than the complete isomerization of homocitrate to homoisocitrate. The MJ1003 and MJ1271 proteins from the methanogen Methanocaldococcus jannaschii formed the first homoaconitase shown to catalyze both the dehydration of (R)-homocitrate to form cis-homoaconitate, and its hydration is shown to produce homoisocitrate. This heterotetrameric enzyme also used the analogous longer chain substrates cis-(homo)(2)aconitate, cis-(homo)(3)aconitate, and cis-(homo)(4)aconitate, all with similar specificities. A combination of the homoaconitase with the M. jannaschii homoisocitrate dehydrogenase catalyzed all of the isomerization and oxidative decarboxylation reactions required to form 2-oxoadipate, 2-oxopimelate, and 2-oxosuberate, completing three iterations of the 2-oxoacid elongation pathway. Methanogenic archaeal homoaconitases and fungal homoaconitases evolved in parallel in the aconitase superfamily. The archaeal homoaconitases share a common ancestor with isopropylmalate isomerases, and both enzymes catalyzed the hydration of the minimal substrate maleate to form d-malate. The variation in substrate specificity among these enzymes correlated with the amino acid sequences of a flexible loop in the small subunits. << Less
J. Biol. Chem. 283:28888-28896(2008) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.
-
Lysine biosynthesis and metabolism in fungi.
Zabriskie T.M., Jackson M.D.
-
Bifunctional isocitrate-homoisocitrate dehydrogenase: a missing link in the evolution of beta-decarboxylating dehydrogenase.
Miyazaki K.
Beta-decarboxylating dehydrogenases comprise 3-isopropylmalate dehydrogenase, isocitrate dehydrogenase, and homoisocitrate dehydrogenase. They share a high degree of amino acid sequence identity and occupy equivalent positions in the amino acid biosynthetic pathways for leucine, glutamate, and lys ... >> More
Beta-decarboxylating dehydrogenases comprise 3-isopropylmalate dehydrogenase, isocitrate dehydrogenase, and homoisocitrate dehydrogenase. They share a high degree of amino acid sequence identity and occupy equivalent positions in the amino acid biosynthetic pathways for leucine, glutamate, and lysine, respectively. Therefore, not only the enzymes but also the whole pathways should have evolved from a common ancestral pathway. In Pyrococcus horikoshii, only one pathway of the three has been identified in the genomic sequence, and PH1722 is the sole beta-decarboxylating dehydrogenase gene. The organism does not require leucine, glutamate, or lysine for growth; the single pathway might play multiple (i.e., ancestral) roles in amino acid biosynthesis. The PH1722 gene was cloned and expressed in Escherichia coli and the substrate specificity of the recombinant enzyme was investigated. It exhibited activities on isocitrate and homoisocitrate at near equal efficiency, but not on 3-isopropylmalate. PH1722 is thus a novel, bifunctional beta-decarboxylating dehydrogenase, which likely plays a dual role in glutamate and lysine biosynthesis in vivo. << Less
Biochem. Biophys. Res. Commun. 331:341-346(2005) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Identification of enzymes homologous to isocitrate dehydrogenase that are involved in coenzyme B and leucine biosynthesis in methanoarchaea.
Howell D.M., Graupner M., Xu H., White R.H.
Two putative Methanococcus jannaschii isocitrate dehydrogenase genes, MJ1596 and MJ0720, were cloned and overexpressed in Escherichia coli, and their gene products were tested for the ability to catalyze the NAD- and NADP-dependent oxidative decarboxylation of DL-threo-3-isopropylmalic acid, threo ... >> More
Two putative Methanococcus jannaschii isocitrate dehydrogenase genes, MJ1596 and MJ0720, were cloned and overexpressed in Escherichia coli, and their gene products were tested for the ability to catalyze the NAD- and NADP-dependent oxidative decarboxylation of DL-threo-3-isopropylmalic acid, threo-isocitrate, erythro-isocitrate, and homologs of threo-isocitrate. Neither enzyme was found to use any of the isomers of isocitrate as a substrate. The protein product of the MJ1596 gene, designated AksF, catalyzed the NAD-dependent decarboxylation of intermediates in the biosynthesis of 7-mercaptoheptanoic acid, a moiety of methanoarchaeal coenzyme B (7-mercaptoheptanylthreonine phosphate). These intermediates included (-)-threo-isohomocitrate [(-)-threo-1-hydroxy-1,2, 4-butanetricarboxylic acid], (-)-threo-iso(homo)(2)citrate [(-)-threo-1-hydroxy-1,2,5-pentanetricarboxylic acid], and (-)-threo-iso(homo)(3)citrate [(-)-threo-1-hydroxy-1,2, 6-hexanetricarboxylic acid]. The protein product of MJ0720 was found to be alpha-isopropylmalate dehydrogenase (LeuB) and was found to catalyze the NAD-dependent decarboxylation of one isomer of DL-threo-isopropylmalate to 2-ketoisocaproate; thus, it is involved in the biosynthesis of leucine. The AksF enzyme proved to be thermostable, losing only 10% of its enzymatic activity after heating at 100 degrees C for 10 min, whereas the LeuB enzyme lost 50% of its enzymatic activity after heating at 80 degrees C for 10 min. << Less
J. Bacteriol. 182:5013-5016(2000) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.