Enzymes
UniProtKB help_outline | 33,524 proteins |
Reaction participants Show >> << Hide
- Name help_outline S-methyl-5'-thioadenosine Identifier CHEBI:17509 (Beilstein: 42420; CAS: 2457-80-9) help_outline Charge 0 Formula C11H15N5O3S InChIKeyhelp_outline WUUGFSXJNOTRMR-IOSLPCCCSA-N SMILEShelp_outline CSC[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 34 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,002 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-methyl-5-thio-α-D-ribose 1-phosphate Identifier CHEBI:58533 Charge -2 Formula C6H11O7PS InChIKeyhelp_outline JTFITTQBRJDSTL-KVTDHHQDSA-L SMILEShelp_outline CSC[C@H]1O[C@H](OP([O-])([O-])=O)[C@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline adenine Identifier CHEBI:16708 (CAS: 73-24-5) help_outline Charge 0 Formula C5H5N5 InChIKeyhelp_outline GFFGJBXGBJISGV-UHFFFAOYSA-N SMILEShelp_outline Nc1ncnc2[nH]cnc12 2D coordinates Mol file for the small molecule Search links Involved in 22 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:11852 | RHEA:11853 | RHEA:11854 | RHEA:11855 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
Reactome help_outline |
Publications
-
Identification of Rv0535 as methylthioadenosine phosphorylase from Mycobacterium tuberculosis.
Buckoreelall K., Sun Y., Hobrath J.V., Wilson L., Parker W.B.
5'-methylthioadenosine (MTA) is a natural purine that is metabolized by methylthioadenosine phosphorylase (MTAP, E.C 2.4.2.28) in Eukarya and Archaea but generally not in bacteria. In this work, Rv0535, which has been annotated as a probable MTAP in Mycobacterium tuberculosis, was expressed in and ... >> More
5'-methylthioadenosine (MTA) is a natural purine that is metabolized by methylthioadenosine phosphorylase (MTAP, E.C 2.4.2.28) in Eukarya and Archaea but generally not in bacteria. In this work, Rv0535, which has been annotated as a probable MTAP in Mycobacterium tuberculosis, was expressed in and purified from Escherichia coli BL21 (DE3). The purified protein displayed properties of a phosphorylase and MTA was the preferred substrate. Adenosine and S-adenosyl-l-homocysteine were poor substrates and no activity was detected with 5'-methylthioinosine, the other natural purines, or the natural pyrimidines. Kinetic analysis of M. tuberculosis MTAP showed that the K(m) value for MTA was 9 μM. Rv0535 was estimated as a 30 kDa protein on a denaturing SDS-PAGE gel, which agreed with the molecular mass predicted by its gene sequence. Using gel filtration chromatography, the native molecular mass of the enzyme was determined to be 60 ± 4 kDa, and thus indicated that M. tuberculosis MTAP is a dimer. Differences in active site between mycobacterial and human MTAPs were identified by homology modeling based on the crystal of the human enzyme. A complete structure-activity relationship analysis could identify differences in substrate specificity between the two enzymes to aid in the development of purine-based, anti-tuberculosis drugs. << Less
-
5'-Methylthioadenosine phosphorylase from Caldariella acidophila. Purification and properties.
Carteni'-Farina M., Oliva A., Romeo G., Napolitano G., De Rosa M., Gambacorta A., Zappia V.
The occurrence of 5'-methylthioadenosine phosphorylase in Caldariella acidophila, a thermophilic bacterium growing optimally at 87 degrees C, is reported. It represents the first example in prokaryotes of a phosphoryolytic cleavage of the thioether. The reaction products, purified by ion-exchange ... >> More
The occurrence of 5'-methylthioadenosine phosphorylase in Caldariella acidophila, a thermophilic bacterium growing optimally at 87 degrees C, is reported. It represents the first example in prokaryotes of a phosphoryolytic cleavage of the thioether. The reaction products, purified by ion-exchange chromatography, have been identified as 5-methylthioribose-1-phosphate and adenine by several analytical procedures. The enzyme has been purified to homogeneity in 32% yield by using DEAE-cellulose and hydroxyapatite chromatography, gel filtration and isoelectric focusing. The enzyme shows a high degree of thermophilicity, its temperature optimum being at 93 degrees C; furthermore no loss of activity is observable after exposure for 1 h at 100 degrees C. The kinetic data indicate a sequential mechanism of the reaction. The apparent Km values are 0.095 mM for 5'-methylthioadenosine and 6.1 mM for phosphate. The specificity of the reaction is rather strict. Experiments performed with analogues of the substrate, i.e. 5'-methylthioinosine, 5'-dimethylthioadenosine sulfonium salt, 5'-n-butylthioadenosine, 5'-isobutylthioadenosine, 5'-isobutylthioinosine, adenosylhomocysteine, 5'-thioethanoladenosine, adenosine, indicate the relevance of the adenine amino group and the sulfur in thioether form in the binding to the enzyme protein. << Less
-
Demonstration of 5'-methylthioadenosine phosphorylase activity in various rat tissues. Some properties of the enzyme from rat lung.
Garbers D.L.
An enzyme (5'-methylthioadenosine phosphorylase) that catalyzes the phosphorolytic cleavage of 5'-methylthioadenosine to 5-methylthioadenosine to 5-methylthioribose-1-phosphate and adenine was found in various rat tissues. Liver and lung had the highest enzyme activities and heart the lowest, most ... >> More
An enzyme (5'-methylthioadenosine phosphorylase) that catalyzes the phosphorolytic cleavage of 5'-methylthioadenosine to 5-methylthioadenosine to 5-methylthioribose-1-phosphate and adenine was found in various rat tissues. Liver and lung had the highest enzyme activities and heart the lowest, most of the activity (greater than 90%) was recovered in soluble tissue fractions. The enzyme from rat lung was purified about 30-fold by pH treatment (NH4)2SO4 fractionation, and gel filtration. The enzyme did not require an added metal-ion for activity, and was not inhibited by EDTA. Many compounds were tested for their inhibitory effects; of these, ribose 1-phosphate, 2-deoxyribose 1-phosphate, fructose 1-phosphate, adenine and guanine were shown to inhibit. Kinetic patterns on reciprocal plots were linear as a function of the concentration of either 5'-methylthioadenosine or phosphate. More detailed kinetic studies suggested that the rat lung 5'-methylioadenosine phosphorylase catalyzes an equilibrium-ordered reaction, and that 5'-methylthioadenosine is the first substrate to bind and 5-methylthioribose-1-phosphate is the first product to be released. << Less
-
Phosphate-stimulated breakdown of 5'-methylthioadenosine by rat ventral prostate.
Pegg A.E., Williams-Ashman H.G.
A soluble enzyme preparation catalysing the release of adenine from 5'-methylthioadenosine was purified some 30-fold from extracts of the rat ventral prostate. This reaction was completely dependent on addition of inorganic phosphate ions to the assay medium. This absolute requirement for phosphat ... >> More
A soluble enzyme preparation catalysing the release of adenine from 5'-methylthioadenosine was purified some 30-fold from extracts of the rat ventral prostate. This reaction was completely dependent on addition of inorganic phosphate ions to the assay medium. This absolute requirement for phosphate ions suggests a phosphorolytic cleavage mechanism. After acid treatment, the other product of the reaction appeared to be 5-methylthioribose. The actions of some other well-characterized enzymes of nucleoside metabolism of 5'-methylthioadenosine were also investigated; purified purine nucleoside phosphorylases from calf spleen and human erythrocytes did not attack 5'-methylthioadenosine. The role of 5'-methylthioadenosine in mammalian tissues is discussed. << Less