Reaction participants Show >> << Hide
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-glutamate Identifier CHEBI:29985 (CAS: 11070-68-1) help_outline Charge -1 Formula C5H8NO4 InChIKeyhelp_outline WHUUTDBJXJRKMK-VKHMYHEASA-M SMILEShelp_outline [NH3+][C@@H](CCC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 244 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,285 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2-oxoglutarate Identifier CHEBI:16810 (Beilstein: 3664503; CAS: 64-15-3) help_outline Charge -2 Formula C5H4O5 InChIKeyhelp_outline KPGXRSRHYNQIFN-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CCC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 425 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,279 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NH4+ Identifier CHEBI:28938 (CAS: 14798-03-9) help_outline Charge 1 Formula H4N InChIKeyhelp_outline QGZKDVFQNNGYKY-UHFFFAOYSA-O SMILEShelp_outline [H][N+]([H])([H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 528 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:11612 | RHEA:11613 | RHEA:11614 | RHEA:11615 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Determination of the midpoint potential of the FAD and FMN flavin cofactors and of the 3Fe-4S cluster of glutamate synthase.
Ravasio S., Curti B., Vanoni M.A.
Glutamate synthase is a complex iron-sulfur flavoprotein that catalyzes the reductive transfer of the L-glutamine amide group to C(2) of 2-oxoglutarate, forming two molecules of L-glutamate. The bacterial enzyme is an alphabeta protomer, which contains one FAD (on the beta subunit, approximately 5 ... >> More
Glutamate synthase is a complex iron-sulfur flavoprotein that catalyzes the reductive transfer of the L-glutamine amide group to C(2) of 2-oxoglutarate, forming two molecules of L-glutamate. The bacterial enzyme is an alphabeta protomer, which contains one FAD (on the beta subunit, approximately 50 kDa), one FMN (on the alpha subunit, approximately 150 kDa), and three different Fe-S clusters (one 3Fe-4S center on the alpha subunit and two 4Fe-4S clusters at an unknown location). To address the problem of the intramolecular electron pathway, we have measured the midpoint potential values of the flavin cofactors and of the 3Fe-4S cluster of glutamate synthase in the isolated alpha and beta subunits and in the alphabeta holoenzyme. No detectable amounts of flavin semiquinones were observed during reductive titrations of the enzyme, indicating that the midpoint potential value of each flavin(ox)/flavin(sq) couple is, in all cases, significantly more negative than that of the corresponding flavin(sq)/flavin(hq) couple. Association of the two subunits to form the alphabeta protomer does not alter significantly the midpoint potential value of the FMN cofactor and of the 3Fe-4S cluster (approximately -240 and -270 mV, respectively), but it makes that of FAD some 40 mV less negative (approximately -340 mV for the beta subunit and -300 mV for FAD bound to the holoenzyme). Binding of the nonreducible NADP(+) analogue, 3-aminopyridine adenine dinucleotide phosphate, made the measured midpoint potential value of the FAD cofactor approximately 30-40 mV less negative in the isolated beta subunit, but had no effect on the redox properties of the alphabeta holoenzyme. This result correlates with the formation of a stable charge-transfer complex between the reduced flavin and the oxidized pyridine nucleotide in the isolated beta subunit, but not in the alphabeta holoenzyme. Binding of L-methionine sulfone, a glutamine analogue, had no significant effect on the redox properties of the enzyme cofactors. On the contrary, 2-oxoglutarate made the measured midpoint potential value of the 3Fe-4S cluster approximately 20 mV more negative in the isolated alpha subunit, but up to 100 mV less negative in the alphabeta holoenzyme as compared to the values of the corresponding free enzyme forms. These findings are consistent with electron transfer from the entry site (FAD) to the exit site (FMN) through the 3Fe-4S center of the enzyme and the involvement of at least one of the two low-potential 4Fe-4S centers, which are present in the glutamate synthase holoenzyme, but not in the isolated subunits. Furthermore, the data demonstrate a specific role of 2-oxoglutarate in promoting electron transfer from FAD to the 3Fe-4S cluster of the glutamate synthase holoenzyme. The modulatory role of 2-oxoglutarate is indeed consistent with the recently determined three-dimensional structure of the glutamate synthase alpha subunit, in which several polypeptide stretches are suitably positioned to mediate communication between substrate binding sites and the enzyme redox centers (FMN and the 3Fe-4S cluster) to tightly control and coordinate the individual reaction steps [Binda, C., et al. (2000) Structure 8, 1299-1308]. << Less
Biochemistry 40:5533-5541(2001) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Synthesis of glutamate in Aerobacter aerogenes by a hitherto unknown route.
Tempest D.W., Meers J.L., Brown C.M.
Biochem J 117:405-407(1970) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Glutamate synthase: a complex iron-sulfur flavoprotein.
Vanoni M.A., Curti B.
Glutamate synthase is a complex iron-sulfur flavoprotein that forms L-glutamate from L-glutamine and 2-oxoglutarate. It participates with glutamine synthetase in ammonia assimilation processes. The known structural and biochemical properties of glutamate synthase from Azospirillum brasilense, a ni ... >> More
Glutamate synthase is a complex iron-sulfur flavoprotein that forms L-glutamate from L-glutamine and 2-oxoglutarate. It participates with glutamine synthetase in ammonia assimilation processes. The known structural and biochemical properties of glutamate synthase from Azospirillum brasilense, a nitrogen-fixing bacterium, will be discussed in comparison to those of the ferredoxin-dependent enzyme from photosynthetic tissues and of the eukaryotic reduced pyridine nucleotide-dependent form of glutamate synthase in order to gain insight into the mechanism of the glutamate synthase reaction. Sequence analyses also revealed that the small subunit of bacterial glutamate synthase may be the prototype of a novel class of flavin adenine dinucleotide- and iron-sulfur-containing oxidoreductase widely used as an enzyme subunit or domain to transfer reducing equivalents from NAD(P)H to an acceptor protein or protein domain. << Less
Cell Mol Life Sci 55:617-638(1999) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Glutamate synthase from Escherichia coli. An iron-sulfide flavoprotein.
Miller R.E., Stadtman E.R.
J. Biol. Chem. 247:7407-7419(1972) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
Comments
RHEA:11609 part of RHEA:15501