Reaction participants Show >> << Hide
- Name help_outline a quinol Identifier CHEBI:24646 Charge 0 Formula C6H2O2R4 SMILEShelp_outline OC1=C(*)C(*)=C(O)C(*)=C1* 2D coordinates Mol file for the small molecule Search links Involved in 238 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
Fe(III)-[cytochrome c]
Identifier
RHEA-COMP:14399
Reactive part
help_outline
- Name help_outline Fe3+ Identifier CHEBI:29034 (CAS: 20074-52-6) help_outline Charge 3 Formula Fe InChIKeyhelp_outline VTLYFUHAOXGGBS-UHFFFAOYSA-N SMILEShelp_outline [Fe+3] 2D coordinates Mol file for the small molecule Search links Involved in 248 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a quinone Identifier CHEBI:132124 Charge 0 Formula C6O2R4 SMILEShelp_outline O=C1C(*)=C(*)C(=O)C(*)=C1* 2D coordinates Mol file for the small molecule Search links Involved in 127 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
Fe(II)-[cytochrome c]
Identifier
RHEA-COMP:10350
Reactive part
help_outline
- Name help_outline Fe2+ Identifier CHEBI:29033 (CAS: 15438-31-0) help_outline Charge 2 Formula Fe InChIKeyhelp_outline CWYNVVGOOAEACU-UHFFFAOYSA-N SMILEShelp_outline [Fe++] 2D coordinates Mol file for the small molecule Search links Involved in 263 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:11484 | RHEA:11485 | RHEA:11486 | RHEA:11487 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Composition, structure, and function of complex III of the respiratory chain.
Rieske J.S.
-
Polypeptide composition of purified QH2:cytochrome c oxidoreductase from beef-heart mitochondria.
Marres C.M., Slater E.C.
1. The polypeptide composition of purified QH2: cytochrome c oxidoreductase prepared by three different methods from beef-heart mitochondria has been determined. Polyacrylamide gel electrophoresis in the presence of dodecyl sulphate resolves eight intrinsic polypeptide bands; when, in addition, 8 ... >> More
1. The polypeptide composition of purified QH2: cytochrome c oxidoreductase prepared by three different methods from beef-heart mitochondria has been determined. Polyacrylamide gel electrophoresis in the presence of dodecyl sulphate resolves eight intrinsic polypeptide bands; when, in addition, 8 M urea is present and a more highly cross-linked gel is used, the smallest polypeptide band is resolved into three different bands. 2. The identity of several polypeptide bands has been established by fractionation. The two heaviest polypeptides (bands 1 and 2) represent the so-called core proteins, band 3 the hemoprotein of cytochrome b, band 4 the hemoprotein of cytochrome c1, band 5 and Rieske Fe-S protein, band 6 a polypeptide associated with cytochrome c1 and identified with the so-called oxidation factor, and band 7 a polypeptide peptide associated with cytochrome b. 3. The validity of molecular weight estimate for the polypeptides of the enzyme based on their mobility on dodecyl sulphate gels has been examined. The polypeptides of bands 1, 2 and 3 showed anomalous migration rates. The molecular weights of the other polypeptides have been estimated from their relative mobilities on either dodecyl sulphate gels or 8 M urea-dodecyl sulphate gels as 29 000, 24 000, 12 000, 8000, 6000, 5000 and 4000, respectively. 4. The stoicheiometry of the different polypeptides in the intact complex was determined using separate staining factors for the individual polypeptide band. << Less