Reaction participants Show >> << Hide
- Name help_outline UDP-β-L-arabinopyranose Identifier CHEBI:61457 Charge -2 Formula C14H20N2O16P2 InChIKeyhelp_outline DQQDLYVHOTZLOR-IAZOVDBXSA-L SMILEShelp_outline O[C@H]1CO[C@H](OP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2ccc(=O)[nH]c2=O)[C@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP-α-D-xylose Identifier CHEBI:57632 Charge -2 Formula C14H20N2O16P2 InChIKeyhelp_outline DQQDLYVHOTZLOR-OCIMBMBZSA-L SMILEShelp_outline O[C@@H]1CO[C@H](OP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2ccc(=O)[nH]c2=O)[C@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 25 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:11320 | RHEA:11321 | RHEA:11322 | RHEA:11323 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Bifunctional cytosolic UDP-glucose 4-epimerases catalyse the interconversion between UDP-D-xylose and UDP-L-arabinose in plants.
Kotake T., Takata R., Verma R., Takaba M., Yamaguchi D., Orita T., Kaneko S., Matsuoka K., Koyama T., Reiter W.D., Tsumuraya Y.
UDP-sugars serve as substrates in the synthesis of cell wall polysaccharides and are themselves generated through sequential interconversion reactions from UDP-Glc (UDP-glucose) as the starting substrate in the cytosol and the Golgi apparatus. For the present study, a soluble enzyme with UDP-Xyl ( ... >> More
UDP-sugars serve as substrates in the synthesis of cell wall polysaccharides and are themselves generated through sequential interconversion reactions from UDP-Glc (UDP-glucose) as the starting substrate in the cytosol and the Golgi apparatus. For the present study, a soluble enzyme with UDP-Xyl (UDP-xylose) 4-epimerase activity was purified approx. 300-fold from pea (Pisum sativum L.) sprouts by conventional chromatography. The N-terminal amino acid sequence of the enzyme revealed that it is encoded by a predicted UDP-Glc 4-epimerase gene, PsUGE1, and is distinct from the UDP-Xyl 4-epimerase localized in the Golgi apparatus. rPsUGE1 (recombinant P. sativum UGE1) expressed in Escherichia coli exhibited both UDP-Xyl 4-epimerase and UDP-Glc 4-epimerase activities with apparent Km values of 0.31, 0.29, 0.16 and 0.15 mM for UDP-Glc, UDP-Gal (UDP-galactose), UDP-Ara (UDP-L-arabinose) and UDP-Xyl respectively. The apparent equilibrium constant for UDP-Ara formation from UDP-Xyl was 0.89, whereas that for UDP-Gal formation from UDP-Glc was 0.24. Phylogenetic analysis revealed that PsUGE1 forms a group with Arabidopsis UDP-Glc 4-epimerases, AtUGE1 and AtUGE3, apart from a group including AtUGE2, AtUGE4 and AtUGE5. Similar to rPsUGE1, recombinant AtUGE1 and AtUGE3 expressed in E. coli showed high UDP-Xyl 4-epimerase activity in addition to their UDP-Glc 4-epimerase activity. Our results suggest that PsUGE1 and its close homologues catalyse the interconversion between UDP-Xyl and UDP-Ara as the last step in the cytosolic de novo pathway for UDP-Ara generation. Alternatively, the net flux of metabolites may be from UDP-Ara to UDP-Xyl as part of the salvage pathway for Ara. << Less
-
The biosynthesis of L-arabinose in plants: molecular cloning and characterization of a Golgi-localized UDP-D-xylose 4-epimerase encoded by the MUR4 gene of Arabidopsis.
Burget E.G., Verma R., Moelhoej M., Reiter W.-D.
The mur4 mutant of Arabidopsis shows a 50% reduction in the monosaccharide L-Ara in leaf-derived cell wall material because of a partial defect in the 4-epimerization of UDP-D-Xyl to UDP-L-Ara. To determine the genetic lesion underlying the mur4 phenotype, the MUR4 gene was cloned by a map-based p ... >> More
The mur4 mutant of Arabidopsis shows a 50% reduction in the monosaccharide L-Ara in leaf-derived cell wall material because of a partial defect in the 4-epimerization of UDP-D-Xyl to UDP-L-Ara. To determine the genetic lesion underlying the mur4 phenotype, the MUR4 gene was cloned by a map-based procedure and found to encode a type-II membrane protein with sequence similarity to UDP-D-Glc 4-epimerases. Enzyme assays of MUR4 protein expressed in the methylotropic yeast Pichia pastoris indicate that it catalyzes the 4-epimerization of UDP-D-Xyl to UDP-L-Ara, the nucleotide sugar used by glycosyltransferases in the arabinosylation of cell wall polysaccharides and wall-resident proteoglycans. Expression of MUR4-green fluorescent protein constructs in Arabidopsis revealed localization patterns consistent with targeting to the Golgi, suggesting that the MUR4 protein colocalizes with glycosyltransferases in the biosynthesis of arabinosylated cell wall components. The Arabidopsis genome encodes three putative proteins with >76% sequence identity to MUR4, which may explain why mur4 plants are not entirely deficient in the de novo synthesis of UDP-L-Ara. << Less
-
The 4-epimerization and decarboxylation of uridine diphosphate D-glucuronic acid by extracts from Phaseolus aureus seedlings.
FEINGOLD D.S., NEUFELD E.F., HASSID W.Z.
J Biol Chem 235:910-913(1960) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.