Reaction participants Show >> << Hide
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline D-alanine Identifier CHEBI:57416 Charge 0 Formula C3H7NO2 InChIKeyhelp_outline QNAYBMKLOCPYGJ-UWTATZPHSA-N SMILEShelp_outline C[C@@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 24 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline D-alanyl-D-alanine Identifier CHEBI:57822 Charge 0 Formula C6H12N2O3 InChIKeyhelp_outline DEFJQIDDEAULHB-QWWZWVQMSA-N SMILEShelp_outline C[C@@H]([NH3+])C(=O)N[C@H](C)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:11224 | RHEA:11225 | RHEA:11226 | RHEA:11227 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Recent advances in the formation of the bacterial peptidoglycan monomer unit.
van Heijenoort J.
Nat Prod Rep 18:503-519(2001) [PubMed] [EuropePMC]
This publication is cited by 11 other entries.
-
Allosteric inhibition of Staphylococcus aureus D-alanine:D-alanine ligase revealed by crystallographic studies.
Liu S., Chang J.S., Herberg J.T., Horng M.M., Tomich P.K., Lin A.H., Marotti K.R.
D-alanine:D-alanine ligase (DDl) is an essential enzyme in bacterial cell wall biosynthesis and an important target for developing new antibiotics. It catalyzes the formation of D-alanine:D-alanine dipeptide, sequentially by using one D-alanine and one ATP as substrates for the first-half reaction ... >> More
D-alanine:D-alanine ligase (DDl) is an essential enzyme in bacterial cell wall biosynthesis and an important target for developing new antibiotics. It catalyzes the formation of D-alanine:D-alanine dipeptide, sequentially by using one D-alanine and one ATP as substrates for the first-half reaction, and a second D-alanine substrate to complete the reaction. Some gain of function DDl mutants can use an alternate second substrate, causing resistance to vancomycin, one of the last lines of defense against life-threatening Gram-positive infections. Here, we report the crystal structure of Staphylococcus aureus DDl (StaDDl) and its cocrystal structures with 3-chloro-2,2-dimethyl-N-[4(trifluoromethyl)phenyl]propanamide (inhibitor 1) (Ki=4 microM against StaDDl) and with ADP, one of the reaction products, at resolutions of 2.0, 2.2, and 2.6 A, respectively. The overall structure of StaDDl can be divided into three distinct domains. The inhibitor binds to a hydrophobic pocket at the interface of the first and the third domain. This inhibitor-binding pocket is adjacent to the first D-alanine substrate site but does not overlap with any substrate sites. An allosteric inhibition mechanism of StaDDl by this compound was proposed. The mechanism provides the basis for developing new antibiotics targeting D-alanine:D-alanine ligase. Because this compound only interacts with residues from the first D-alanine site, inhibitors with this binding mode potentially could overcome vancomycin resistance. << Less
Proc Natl Acad Sci U S A 103:15178-15183(2006) [PubMed] [EuropePMC]
-
Kinetic mechanism and inhibition of Mycobacterium tuberculosis D-alanine:D-alanine ligase by the antibiotic D-cycloserine.
Prosser G.A., de Carvalho L.P.
D-cycloserine (DCS) is an antibiotic that is currently used in second-line treatment of tuberculosis. DCS is a structural analogue of D-alanine, and targets two enzymes involved in the cytosolic stages of peptidoglycan synthesis: alanine racemase (Alr) and D-alanine:D-alanine ligase (Ddl). The mec ... >> More
D-cycloserine (DCS) is an antibiotic that is currently used in second-line treatment of tuberculosis. DCS is a structural analogue of D-alanine, and targets two enzymes involved in the cytosolic stages of peptidoglycan synthesis: alanine racemase (Alr) and D-alanine:D-alanine ligase (Ddl). The mechanisms of inhibition of DCS have been well-assessed using Alr and Ddl enzymes from various bacterial species, but little is known regarding the interactions of DCS with the mycobacterial orthologues of these enzymes. We have over-expressed and purified recombinant Mycobacterium tuberculosis Ddl (MtDdl; Rv2981c), and report a kinetic examination of the enzyme with both its native substrate and DCS. MtDdl is activated by K(+), follows an ordered ter ter mechanism and displays distinct affinities for D-Ala at each D-Ala binding site (K(m,D-Ala1) = 0.075 mm, K(m,D-Ala2) = 3.6 mm). ATP is the first substrate to bind and is necessary for subsequent binding of D-alanine or DCS. The pH dependence of MtDdl kinetic parameters indicate that general base chemistry is involved in the catalytic step. DCS was found to competitively inhibit D-Ala binding at both MtDdl D-Ala sites with equal affinity (K(i,DCS1) = 14 μm, K(i,DCS2) = 25 μm); however, each enzyme active site can only accommodate a single DCS molecule at a given time. The pH dependence of K(i,DCS2) revealed a loss of DCS binding affinity at high pH (pK(a) = 7.5), suggesting that DCS binds optimally in the zwitterionic form. The results of this study may assist in the design and development of novel Ddl-specific inhibitors for use as anti-mycobacterial agents. << Less
-
Structure of the Mycobacterium tuberculosis D-alanine:D-alanine ligase, a target of the antituberculosis drug D-cycloserine.
Bruning J.B., Murillo A.C., Chacon O., Barletta R.G., Sacchettini J.C.
D-alanine:D-alanine ligase (EC 6.3.2.4; Ddl) catalyzes the ATP-driven ligation of two D-alanine (D-Ala) molecules to form the D-alanyl:D-alanine dipeptide. This molecule is a key building block in peptidoglycan biosynthesis, making Ddl an attractive target for drug development. D-Cycloserine (DCS) ... >> More
D-alanine:D-alanine ligase (EC 6.3.2.4; Ddl) catalyzes the ATP-driven ligation of two D-alanine (D-Ala) molecules to form the D-alanyl:D-alanine dipeptide. This molecule is a key building block in peptidoglycan biosynthesis, making Ddl an attractive target for drug development. D-Cycloserine (DCS), an analog of D-Ala and a prototype Ddl inhibitor, has shown promise for the treatment of tuberculosis. Here, we report the crystal structure of Mycobacterium tuberculosis Ddl at a resolution of 2.1 Å. This structure indicates that Ddl is a dimer and consists of three discrete domains; the ligand binding cavity is at the intersection of all three domains and conjoined by several loop regions. The M. tuberculosis apo Ddl structure shows a novel conformation that has not yet been observed in Ddl enzymes from other species. The nucleotide and D-alanine binding pockets are flexible, requiring significant structural rearrangement of the bordering regions for entry and binding of both ATP and D-Ala molecules. Solution affinity and kinetic studies showed that DCS interacts with Ddl in a manner similar to that observed for D-Ala. Each ligand binds to two binding sites that have significant differences in affinity, with the first binding site exhibiting high affinity. DCS inhibits the enzyme, with a 50% inhibitory concentration (IC(50)) of 0.37 mM under standard assay conditions, implicating a preferential and weak inhibition at the second, lower-affinity binding site. Moreover, DCS binding is tighter at higher ATP concentrations. The crystal structure illustrates potential drugable sites that may result in the development of more-effective Ddl inhibitors. << Less
Antimicrob. Agents Chemother. 55:291-301(2011) [PubMed] [EuropePMC]
-
Synthesis and evaluation of inhibitors of bacterial D-alanine:D-alanine ligases.
Ellsworth B.A., Tom N.J., Bartlett P.A.
<h4>Background</h4>D-Alanine:D-alanine ligase is essential for bacterial cell wall synthesis, assembling one of the subunits used for peptidoglycan crosslinking. The resulting aminoacyl-D-Ala-D-Ala strand is the Achilles' heel of vancomycin-susceptible bacteria; binding of vancomycin to this seque ... >> More
<h4>Background</h4>D-Alanine:D-alanine ligase is essential for bacterial cell wall synthesis, assembling one of the subunits used for peptidoglycan crosslinking. The resulting aminoacyl-D-Ala-D-Ala strand is the Achilles' heel of vancomycin-susceptible bacteria; binding of vancomycin to this sequence interferes with crosslinking and blocks cell-wall synthesis. A mutant enzyme (VanA) from vancomycin-resistant Enterococcus faecium has been found to incorporate alpha-hydroxy acids at the terminal site instead of D-Ala; the resulting depsipeptides do not bind vancomycin, yet function in the crosslinking reaction. To investigate the binding specificity of these ligases, we examined their inhibition by a series of substrate analogs.<h4>Results</h4>Phosphinate and phosphonate dipeptide analogs (which, after phosphorylation by the enzyme, mimic intermediates in the ligation reaction) were prepared and evaluated as reversible inhibitors of the wild-type ligases DdlA and DdlB from Escherichia coli and of the mutant enzyme VanA. Ki values were calculated for the first stage of inhibitor binding according to a mechanism in which inhibitor competes with D-Ala for both substrate binding sites. DdlA is potently inhibited by phosphinates but not by phosphonates, while DdlB and VanA show little discrimination; both series of compounds inhibit DdlB strongly and VanA weakly.<h4>Conclusions</h4>VanA has greatly reduced affinity for all the ligands studied. The relative affinities of the inhibitors in the reversible binding step are not, however, consistent with the substrate specificities of the enzymes. We propose a mechanism in which proton transfer from the attacking nucleophile to the departing phosphate occurs directly, without intervention of the enzyme. << Less