Reaction participants Show >> << Hide
- Name help_outline (6S)-5-methyl-5,6,7,8-tetrahydrofolate Identifier CHEBI:18608 (Beilstein: 10132446) help_outline Charge -2 Formula C20H23N7O6 InChIKeyhelp_outline ZNOVTXRBGFNYRX-STQMWFEESA-L SMILEShelp_outline CN1[C@@H](CNc2ccc(cc2)C(=O)N[C@@H](CCC([O-])=O)C([O-])=O)CNc2nc(N)[nH]c(=O)c12 2D coordinates Mol file for the small molecule Search links Involved in 15 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-homocysteine Identifier CHEBI:58199 Charge 0 Formula C4H9NO2S InChIKeyhelp_outline FFFHZYDWPBMWHY-VKHMYHEASA-N SMILEShelp_outline [NH3+][C@@H](CCS)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 20 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (6S)-5,6,7,8-tetrahydrofolate Identifier CHEBI:57453 (Beilstein: 10223255) help_outline Charge -2 Formula C19H21N7O6 InChIKeyhelp_outline MSTNYGQPCMXVAQ-RYUDHWBXSA-L SMILEShelp_outline Nc1nc2NC[C@H](CNc3ccc(cc3)C(=O)N[C@@H](CCC([O-])=O)C([O-])=O)Nc2c(=O)[nH]1 2D coordinates Mol file for the small molecule Search links Involved in 40 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-methionine Identifier CHEBI:57844 Charge 0 Formula C5H11NO2S InChIKeyhelp_outline FFEARJCKVFRZRR-BYPYZUCNSA-N SMILEShelp_outline CSCC[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 121 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:11172 | RHEA:11173 | RHEA:11174 | RHEA:11175 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline | ||||
M-CSA help_outline |
Publications
-
Domain alternation switches B(12)-dependent methionine synthase to the activation conformation.
Bandarian V., Pattridge K.A., Lennon B.W., Huddler D.P., Matthews R.G., Ludwig M.L.
B(12)-dependent methionine synthase (MetH) from Escherichia coli is a large modular protein that uses bound cobalamin as an intermediate methyl carrier. Major domain rearrangements have been postulated to explain how cobalamin reacts with three different substrates: homocysteine, methyltetrahydrof ... >> More
B(12)-dependent methionine synthase (MetH) from Escherichia coli is a large modular protein that uses bound cobalamin as an intermediate methyl carrier. Major domain rearrangements have been postulated to explain how cobalamin reacts with three different substrates: homocysteine, methyltetrahydrofolate and S-adenosylmethionine (AdoMet). Here we describe the 3.0 A structure of a 65 kDa C-terminal fragment of MetH that spans the cobalamin- and AdoMet-binding domains, arranged in a conformation suitable for the methyl transfer from AdoMet to cobalamin that occurs during activation. In the conversion to the activation conformation, a helical domain that capped the cofactor moves 26 A and rotates by 63 degrees, allowing formation of a new interface between cobalamin and the AdoMet-binding (activation) domain. Interactions with the MetH activation domain drive the cobalamin away from its binding domain in a way that requires dissociation of the axial cobalt ligand and, thereby, provide a mechanism for control of the distribution of enzyme conformations. << Less
-
Mutations in the B12-binding region of methionine synthase: how the protein controls methylcobalamin reactivity.
Jarrett J.T., Amaratunga M., Drennan C.L., Scholten J.D., Sands R.H., Ludwig M.L., Matthews R.G.
Vitamin B12-dependent methionine synthase catalyzes the transfer of a methyl group from methyltetrahydrofolate to homocysteine via the enzyme-bound cofactor methylcobalamin. To carry out this reaction, the enzyme must alternately stabilize six-coordinate methylcobalamin and four-coordinate cob(I)a ... >> More
Vitamin B12-dependent methionine synthase catalyzes the transfer of a methyl group from methyltetrahydrofolate to homocysteine via the enzyme-bound cofactor methylcobalamin. To carry out this reaction, the enzyme must alternately stabilize six-coordinate methylcobalamin and four-coordinate cob(I)alamin oxidation states. The lower axial ligand to the cobalt in free methylcobalamin is the dimethylbenzimidazole nucleotide substituent of the corrin ring; when methylcobalamin binds to methionine synthase, the ligand is replaced by histidine 759, which in turn is linked by hydrogen bonds to aspartate 757 and thence to serine 810. We have proposed that these residues control the reactivity of the enzyme-bound cofactor both by increasing the coordination strength of the imidazole ligand and by allowing stabilization of cob(I)alamin via protonation of the His-Asp-Ser triad. In this paper we report results of mutation studies focusing on these catalytic residues. We have used visible absorbance spectroscopy and electron paramagnetic resonance spectroscopy to probe the coordination state of the cofactor and have used stopped-flow kinetic measurements to explore the reactivity of each mutant. We show that mutation of histidine 759 blocks turnover, while mutations of aspartate 757 or serine 810 decrease the reactivity of the methylcobalamin cofactor. In contrast, we show that mutations of these same residues increase the rate of AdoMet-dependent reactivation of cob(II)alamin enzyme. We propose that the reaction with AdoMet proceeds via a different transition state than the reactions with homocysteine and methyltetrahydrofolate. These results provide a glimpse at how a protein can control the reactivity of methylcobalamin. << Less
-
Cobalamin-dependent methionine synthase: the structure of a methylcobalamin-binding fragment and implications for other B12-dependent enzymes.
Drennan C.L., Matthews R.G., Ludwig M.L.
Cobalamin-dependent methionine synthase is a large enzyme composed of structurally and functionally distinct regions. Recent studies have begun to define the roles of several regions of the protein. In particular, the structure of a 27 kDa cobalamin-binding fragment of the enzyme from Escherichia ... >> More
Cobalamin-dependent methionine synthase is a large enzyme composed of structurally and functionally distinct regions. Recent studies have begun to define the roles of several regions of the protein. In particular, the structure of a 27 kDa cobalamin-binding fragment of the enzyme from Escherichia coli has been determined by X-ray crystallography, and has revealed the motifs and interactions responsible for recognition of the cofactor. The amino acid sequences of several adenosylcobalamin-dependent enzymes, the methylmalonyl coenzyme A mutases and glutamate mutases, show homology with the cobalamin-binding region of methionine synthase and retain conserved residues that are determinants for the binding of the prosthetic group, suggesting that these mutases and methionine synthase share common three-dimensional structures. << Less
-
How a protein binds B12: a 3.0 A X-ray structure of B12-binding domains of methionine synthase.
Drennan C.L., Huang S., Drummond J.T., Matthews R.G., Ludwig M.L.
The crystal structure of a 27-kilodalton methylcobalamin-containing fragment of methionine synthase from Escherichia coli was determined at 3.0 A resolution. This structure depicts cobalamin-protein interactions and reveals that the corrin macrocycle lies between a helical amino-terminal domain an ... >> More
The crystal structure of a 27-kilodalton methylcobalamin-containing fragment of methionine synthase from Escherichia coli was determined at 3.0 A resolution. This structure depicts cobalamin-protein interactions and reveals that the corrin macrocycle lies between a helical amino-terminal domain and an alpha/beta carboxyl-terminal domain that is a variant of the Rossmann fold. Methylcobalamin undergoes a conformational change on binding the protein; the dimethylbenzimidazole group, which is coordinated to the cobalt in the free cofactor, moves away from the corrin and is replaced by a histidine contributed by the protein. The sequence Asp-X-His-X-X-Gly, which contains this histidine ligand, is conserved in the adenosylcobalamin-dependent enzymes methylmalonyl-coenzyme A mutase and glutamate mutase, suggesting that displacement of the dimethylbenzimidazole will be a feature common to many cobalamin-binding proteins. Thus the cobalt ligand, His759, and the neighboring residues Asp757 and Ser810, may form a catalytic quartet, Co-His-Asp-Ser, that modulates the reactivity of the B12 prosthetic group in methionine synthase. << Less
-
Interaction of flavodoxin with cobalamin-dependent methionine synthase.
Hall D.A., Jordan-Starck T.C., Loo R.O., Ludwig M.L., Matthews R.G.
Cobalamin-dependent methionine synthase catalyzes the transfer of a methyl group from methyltetrahydrofolate to homocysteine, forming tetrahydrofolate and methionine. The Escherichia coli enzyme, like its mammalian homologue, is occasionally inactivated by oxidation of the cofactor to cob(II)alami ... >> More
Cobalamin-dependent methionine synthase catalyzes the transfer of a methyl group from methyltetrahydrofolate to homocysteine, forming tetrahydrofolate and methionine. The Escherichia coli enzyme, like its mammalian homologue, is occasionally inactivated by oxidation of the cofactor to cob(II)alamin. To return to the catalytic cycle, the cob(II)alamin forms of both the bacterial and mammalian enzymes must be reductively remethylated. Reduced flavodoxin donates an electron for this reaction in E. coli, and S-adenosylmethionine serves as the methyl donor. In humans, the electron is thought to be provided by methionine synthase reductase, a protein containing a domain with a significant degree of homology to flavodoxin. Because of this homology, studies of the interactions between E. coli flavodoxin and methionine synthase provide a model for the mammalian system. To characterize the binding interface between E. coli flavodoxin and methionine synthase, we have employed site-directed mutagenesis and chemical cross-linking using carbodiimide and N-hydroxysuccinimide. Glutamate 61 of flavodoxin is identified as a cross-linked residue, and lysine 959 of the C-terminal activation domain of methionine synthase is assigned as its partner. The mutation of lysine 959 to threonine results in a diminished level of cross-linking, but has only a small effect on the affinity of methionine synthase for flavodoxin. Identification of these cross-linked residues provides evidence in support of a docking model that will be useful in predicting the effects of mutations observed in mammalian homologues of E. coli flavodoxin and methionine synthase. << Less
-
Cobalamin-dependent methionine synthase.
Banerjee R.V., Matthews R.G.
Cobalamin-dependent methionine synthase catalyzes the transfer of a methyl group from N5-methyltetrahydrofolate to homocysteine, producing tetrahydrofolate and methionine. Insufficient availability of cobalamin, or inhibition of methionine synthase by exposure to nitrous oxide, leads to diminished ... >> More
Cobalamin-dependent methionine synthase catalyzes the transfer of a methyl group from N5-methyltetrahydrofolate to homocysteine, producing tetrahydrofolate and methionine. Insufficient availability of cobalamin, or inhibition of methionine synthase by exposure to nitrous oxide, leads to diminished activity of this enzyme. In humans, severe inhibition of methionine synthase results in the development of megaloblastic anemia, and eventually in subacute combined degeneration of the spinal cord. It also results in diminished intracellular folate levels and a redistribution of folate derivatives. In this review, we summarize recent progress in understanding the catalysis and regulation of this important enzyme from both bacterial and mammalian sources. Because inhibition of mammalian methionine synthase can restrict the incorporation of methyltetrahydrofolate from the blood into cellular folate pools that can be used for nucleotide biosynthesis, it is a potential chemotherapeutic target. The review emphasizes the mechanistic information that will be needed in order to design rational inhibitors of the enzyme. << Less
-
Protonation state of methyltetrahydrofolate in a binary complex with cobalamin-dependent methionine synthase.
Smith A.E., Matthews R.G.
N5-Methyltetrahydrofolate (CH(3)-H(4)folate) donates a methyl group to the cob(I)alamin cofactor in the reaction catalyzed by cobalamin-dependent methionine synthase (MetH, EC 2.1.1.3). Nucleophilic displacement of a methyl group attached to a tertiary amine is a reaction without an obvious preced ... >> More
N5-Methyltetrahydrofolate (CH(3)-H(4)folate) donates a methyl group to the cob(I)alamin cofactor in the reaction catalyzed by cobalamin-dependent methionine synthase (MetH, EC 2.1.1.3). Nucleophilic displacement of a methyl group attached to a tertiary amine is a reaction without an obvious precedent in bioorganic chemistry. Activation of CH(3)-H(4)folate by protonation prior to transfer of the methyl group has been the favored mechanism. Protonation at N5 would lead to formation of an aminium cation, and quaternary amines such as 5,5-dimethyltetrahydropterin have been shown to transfer methyl groups to cob(I)alamin. Because CH(3)-H(4)folate is an enamine, protonation could occur either at N5 to form an aminium cation or on a conjugated carbon with formation of an iminium cation. We used (13)C distortionless enhancement by polarization transfer (DEPT) NMR spectroscopy to infer that CH(3)-H(4)folate in aqueous solution protonates at N5, not on carbon. CH(3)-H(4)folate must eventually protonate at N5 to form the product H(4)folate; however, this protonation could occur either upon formation of the binary enzyme-CH(3)-H(4)folate complex or later in the reaction mechanism. Protonation at N5 is accompanied by substantial changes in the visible absorbance spectrum of CH(3)-H(4)folate. We have measured the spectral changes associated with binding of CH(3)-H(4)folate to a catalytically competent fragment of MetH over the pH range from 5.5 to 8.5. These studies indicate that CH(3)-H(4)folate is bound in the unprotonated form throughout this pH range and that protonated CH(3)-H(4)folate does not bind to the enzyme. Our observations are rationalized by sequence homologies between the folate-binding region of MetH and dihydropteroate synthase, which suggest that the pterin ring is bound in the hydrophobic core of an alpha(8)beta(8) barrel in both enzymes. The results from these studies are difficult to reconcile with an S(N)2 mechanism for methyl transfer and suggest that the presence of the cobalamin cofactor is important for CH(3)-H(4)folate activation. We propose that protonation of N5 occurs after carbon-nitrogen bond cleavage, and we invoke a mechanism involving oxidative addition of Co(1+) to the N5-methyl bond to rationalize our results. << Less