Reaction participants Show >> << Hide
- Name help_outline a haloacetate Identifier CHEBI:85638 Charge -1 Formula C2H2O2X SMILEShelp_outline [O-]C(=O)C* 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a halide anion Identifier CHEBI:16042 Charge -1 Formula X SMILEShelp_outline [*-] 2D coordinates Mol file for the small molecule Search links Involved in 186 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline glycolate Identifier CHEBI:29805 (CAS: 666-14-8) help_outline Charge -1 Formula C2H3O3 InChIKeyhelp_outline AEMRFAOFKBGASW-UHFFFAOYSA-M SMILEShelp_outline OCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 24 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:11044 | RHEA:11045 | RHEA:11046 | RHEA:11047 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
X-Ray crystallographic and mutational studies of fluoroacetate dehalogenase from Burkholderia sp. strain FA1.
Jitsumori K., Omi R., Kurihara T., Kurata A., Mihara H., Miyahara I., Hirotsu K., Esaki N.
Fluoroacetate dehalogenase catalyzes the hydrolytic defluorination of fluoroacetate to produce glycolate. The enzyme is unique in that it catalyzes the cleavage of a carbon-fluorine bond of an aliphatic compound: the bond energy of the carbon-fluorine bond is among the highest found in natural pro ... >> More
Fluoroacetate dehalogenase catalyzes the hydrolytic defluorination of fluoroacetate to produce glycolate. The enzyme is unique in that it catalyzes the cleavage of a carbon-fluorine bond of an aliphatic compound: the bond energy of the carbon-fluorine bond is among the highest found in natural products. The enzyme also acts on chloroacetate, although much less efficiently. We here determined the X-ray crystal structure of the enzyme from Burkholderia sp. strain FA1 as the first experimentally determined three-dimensional structure of fluoroacetate dehalogenase. The enzyme belongs to the alpha/beta hydrolase superfamily and exists as a homodimer. Each subunit consists of core and cap domains. The catalytic triad, Asp104-His271-Asp128, of which Asp104 serves as the catalytic nucleophile, was found in the core domain at the domain interface. The active site was composed of Phe34, Asp104, Arg105, Arg108, Asp128, His271, and Phe272 of the core domain and Tyr147, His149, Trp150, and Tyr212 of the cap domain. An electron density peak corresponding to a chloride ion was found in the vicinity of the N(epsilon1) atom of Trp150 and the N(epsilon2) atom of His149, suggesting that these are the halide ion acceptors. Site-directed replacement of each of the active-site residues, except for Trp150, by Ala caused the total loss of the activity toward fluoroacetate and chloroacetate, whereas the replacement of Trp150 caused the loss of the activity only toward fluoroacetate. An interaction between Trp150 and the fluorine atom is probably an absolute requirement for the reduction of the activation energy for the cleavage of the carbon-fluorine bond. << Less
J. Bacteriol. 191:2630-2637(2009) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Mapping the reaction coordinates of enzymatic defluorination.
Chan P.W., Yakunin A.F., Edwards E.A., Pai E.F.
The carbon-fluorine bond is the strongest covalent bond in organic chemistry, yet fluoroacetate dehalogenases can readily hydrolyze this bond under mild physiological conditions. Elucidating the molecular basis of this rare biocatalytic activity will provide the fundamental chemical insights into ... >> More
The carbon-fluorine bond is the strongest covalent bond in organic chemistry, yet fluoroacetate dehalogenases can readily hydrolyze this bond under mild physiological conditions. Elucidating the molecular basis of this rare biocatalytic activity will provide the fundamental chemical insights into how this formidable feat is achieved. Here, we present a series of high-resolution (1.15-1.80 Å) crystal structures of a fluoroacetate dehalogenase, capturing snapshots along the defluorination reaction: the free enzyme, enzyme-fluoroacetate Michaelis complex, glycolyl-enzyme covalent intermediate, and enzyme-product complex. We demonstrate that enzymatic defluorination requires a halide pocket that not only supplies three hydrogen bonds to stabilize the fluoride ion but also is finely tailored for the smaller fluorine halogen atom to establish selectivity toward fluorinated substrates. We have further uncovered dynamics near the active site which may play pivotal roles in enzymatic defluorination. These findings may ultimately lead to the development of novel defluorinases that will enable the biotransformation of more complex fluorinated organic compounds, which in turn will assist the synthesis, detoxification, biodegradation, disposal, recycling, and regulatory strategies for the growing markets of organofluorines across major industrial sectors. << Less
J. Am. Chem. Soc. 133:7461-7468(2011) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
Comments
"Purification, characterization, and gene cloning of a novel fluoroacetate dehalogenase from Burkholderia sp. FA1." Kurihara T., Yamauchi T., Ichiyama S., Takahata H., Esaki N. J. Mol. Catal., B Enzym. 23:347-355(2003) and "Sequence- and activity-based screening of microbial genomes for novel dehalogenases." Chan W.Y., Wong M., Guthrie J., Savchenko A.V., Yakunin A.F., Pai E.F., Edwards E.A. Microb. Biotechnol. 3:107-120(2010)