Reaction participants Show >> << Hide
-
Namehelp_outline
a 5'-end triphospho-(purine-ribonucleoside) in mRNA
Identifier
RHEA-COMP:13942
Reactive part
help_outline
- Name help_outline a 5'-end triphospho-(purine-ribonucleoside) residue Identifier CHEBI:138288 Charge -4 Formula C5H7O13P3R SMILEShelp_outline [O-]P(OP(OP(OC[C@H]1O[C@H]([C@@H]([C@@H]1O*)O)*)(=O)[O-])(=O)[O-])(=O)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
a 5'-end diphospho-(purine-ribonucleoside) in mRNA
Identifier
RHEA-COMP:13929
Reactive part
help_outline
- Name help_outline a 5'-diphospho-(purine-ribonucleoside) residue Identifier CHEBI:138276 Charge -3 Formula C5H7O10P2R SMILEShelp_outline [C@@H]1(O[C@H]([C@@H]([C@@H]1O*)O)*)COP(OP([O-])(=O)[O-])(=O)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 12 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:11008 | RHEA:11009 | RHEA:11010 | RHEA:11011 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
More general form(s) of this reaction
Publications
-
mRNA capping: biological functions and applications.
Ramanathan A., Robb G.B., Chan S.H.
The 5' m7G cap is an evolutionarily conserved modification of eukaryotic mRNA. Decades of research have established that the m7G cap serves as a unique molecular module that recruits cellular proteins and mediates cap-related biological functions such as pre-mRNA processing, nuclear export and cap ... >> More
The 5' m7G cap is an evolutionarily conserved modification of eukaryotic mRNA. Decades of research have established that the m7G cap serves as a unique molecular module that recruits cellular proteins and mediates cap-related biological functions such as pre-mRNA processing, nuclear export and cap-dependent protein synthesis. Only recently has the role of the cap 2'O methylation as an identifier of self RNA in the innate immune system against foreign RNA has become clear. The discovery of the cytoplasmic capping machinery suggests a novel level of control network. These new findings underscore the importance of a proper cap structure in the synthesis of functional messenger RNA. In this review, we will summarize the current knowledge of the biological roles of mRNA caps in eukaryotic cells. We will also discuss different means that viruses and their host cells use to cap their RNA and the application of these capping machineries to synthesize functional mRNA. Novel applications of RNA capping enzymes in the discovery of new RNA species and sequencing the microbiome transcriptome will also be discussed. We will end with a summary of novel findings in RNA capping and the questions these findings pose. << Less
Nucleic Acids Res 44:7511-7526(2016) [PubMed] [EuropePMC]
This publication is cited by 15 other entries.
-
Enzymology of RNA cap synthesis.
Ghosh A., Lima C.D.
The 5' guanine-N7 methyl cap is unique to cellular and viral messenger RNA (mRNA) and is the first co-transcriptional modification of mRNA. The mRNA cap plays a pivotal role in mRNA biogenesis and stability, and is essential for efficient splicing, mRNA export, and translation. Capping occurs by a ... >> More
The 5' guanine-N7 methyl cap is unique to cellular and viral messenger RNA (mRNA) and is the first co-transcriptional modification of mRNA. The mRNA cap plays a pivotal role in mRNA biogenesis and stability, and is essential for efficient splicing, mRNA export, and translation. Capping occurs by a series of three enzymatic reactions that results in formation of N7-methyl guanosine linked through a 5'-5' inverted triphosphate bridge to the first nucleotide of a nascent transcript. Capping of cellular mRNA occurs co-transcriptionally and in vivo requires that the capping apparatus be physically associated with the RNA polymerase II elongation complex. Certain capped mRNAs undergo further methylation to generate distinct cap structures. Although mRNA capping is conserved among viruses and eukaryotes, some viruses have adopted strategies for capping mRNA that are distinct from the cellular mRNA capping pathway. << Less
Wiley Interdiscip Rev RNA 1:152-172(2010) [PubMed] [EuropePMC]
This publication is cited by 11 other entries.