Reaction participants Show >> << Hide
- Name help_outline (E)-cinnamate Identifier CHEBI:15669 (Beilstein: 3904521) help_outline Charge -1 Formula C9H7O2 InChIKeyhelp_outline WBYWAXJHAXSJNI-VOTSOKGWSA-M SMILEShelp_outline [O-]C(=O)\C=C\c1ccccc1 2D coordinates Mol file for the small molecule Search links Involved in 13 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,279 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,285 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline trans-2-coumarate Identifier CHEBI:12875 Charge -1 Formula C9H7O3 InChIKeyhelp_outline PMOWTIHVNWZYFI-AATRIKPKSA-M SMILEShelp_outline Oc1ccccc1\C=C\C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:10956 | RHEA:10957 | RHEA:10958 | RHEA:10959 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
The 2-hydroxylation of trans-cinnamic acid by chloroplasts from Melilotus alba Desr.
Gestetner B., Conn E.E.
-
Anabolic metabolism of autotoxic substance coumarins in plants.
Wu B., Shi S., Zhang H., Lu B., Nan P., A Y.
<h4>Background</h4>Autotoxicity is an intraspecific manifestation of allelopathy in plant species. The specialized metabolites and their derivatives that cause intraspecific allelopathic inhibition in the plant are known as autotoxic substances. Consequently, autotoxic substances production seriou ... >> More
<h4>Background</h4>Autotoxicity is an intraspecific manifestation of allelopathy in plant species. The specialized metabolites and their derivatives that cause intraspecific allelopathic inhibition in the plant are known as autotoxic substances. Consequently, autotoxic substances production seriously affects the renewal and stability of ecological communities.<h4>Methods</h4>This article systematically summarizes the types of autotoxic substances present in different plants. They mainly include phenolic compounds, terpenoids, and nitrogenous organic compounds. Phenolic coumarins are the main autotoxic substances in many plants. Therefore, we also discuss differences in coumarin types and content among plant varieties, developmental stages, and tissue parts, as well as their mechanisms of autotoxicity. In addition, we review the metabolic pathways involved in coumarin biosynthesis, the key enzymes, genes, and transcription factors, as well as factors affecting coumarin biosynthesis.<h4>Results</h4>Coumarin biosynthesis involves three stages: (1) the formation of the coumarin nucleus; (2) acylation, hydroxylation, and cyclization; (3) structural modification. The key enzymes involved in the coumarin nuclear formation stage include PAL, C4H, 4CL, HCT, CAOMT, COSY, F6'H, and CCoAOMT1, and the key genes involved include BGA, CYP450 and MDR, among others. Ortho-hydroxylation is a key step in coumarin biosynthesis and PS, COSY and S8H are the key enzymes involved in this process. Finally, UGTs are responsible for the glycosylation modification of coumarins, and the MaUGT gene may therefore be involved in coumarin biosynthesis.<h4>Conclusion</h4>It is important to elucidate the autotoxicity and anabolic mechanisms of coumarins to create new germplasms that produce fewer autotoxic substances. << Less