Enzymes
UniProtKB help_outline | 2 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline 6-decylubiquinone Identifier CHEBI:52020 (Beilstein: 5070396; CAS: 55486-00-5) help_outline Charge 0 Formula C19H30O4 InChIKeyhelp_outline VMEGFMNVSYVVOM-UHFFFAOYSA-N SMILEShelp_outline CCCCCCCCCCC1=C(C)C(=O)C(OC)=C(OC)C1=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline thiosulfate Identifier CHEBI:33542 Charge -1 Formula HO3S2 InChIKeyhelp_outline DHCDFWKWKRSZHF-UHFFFAOYSA-M SMILEShelp_outline [H]SS([O-])(=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 22 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 6-decylubiquinol Identifier CHEBI:52021 (Beilstein: 11425057) help_outline Charge 0 Formula C19H32O4 InChIKeyhelp_outline FZPHMACGWIAGFA-UHFFFAOYSA-N SMILEShelp_outline CCCCCCCCCCc1c(C)c(O)c(OC)c(OC)c1O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline tetrathionate Identifier CHEBI:15226 (CAS: 15536-54-6) help_outline Charge -2 Formula O6S4 InChIKeyhelp_outline HPQYKCJIWQFJMS-UHFFFAOYSA-L SMILEShelp_outline [O-]S(=O)(=O)SSS([O-])(=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:10936 | RHEA:10937 | RHEA:10938 | RHEA:10939 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Coupling of the pathway of sulphur oxidation to dioxygen reduction: characterization of a novel membrane-bound thiosulphate:quinone oxidoreductase.
Muller F.H., Bandeiras T.M., Urich T., Teixeira M., Gomes C.M., Kletzin A.
Thiosulphate is one of the products of the initial step of the elemental sulphur oxidation pathway in the thermoacidophilic archaeon Acidianus ambivalens. A novel thiosulphate:quinone oxidoreductase (TQO) activity was found in the membrane extracts of aerobically grown cells of this organism. The ... >> More
Thiosulphate is one of the products of the initial step of the elemental sulphur oxidation pathway in the thermoacidophilic archaeon Acidianus ambivalens. A novel thiosulphate:quinone oxidoreductase (TQO) activity was found in the membrane extracts of aerobically grown cells of this organism. The enzyme was purified 21-fold from the solubilized membrane fraction. The TQO oxidized thiosulphate with tetrathionate as product and ferricyanide or decyl ubiquinone (DQ) as electron acceptors. The maximum specific activity with ferricyanide was 73.4 U (mg protein)(-1) at 92 degrees C and pH 6, with DQ it was 397 mU (mg protein)(-1) at 80 degrees C. The Km values were 2.6 mM for thiosulphate (k(cat) = 167 s(-1)), 3.4 mM for ferricyanide and 5.87 micro M for DQ. The enzymic activity was inhibited by sulphite (Ki = 5 micro M), metabisulphite, dithionite and TritonX-100, but not by sulphate or tetrathionate. A mixture of caldariella quinone, sulfolobus quinone and menaquinone was non-covalently bound to the protein. No other cofactors were detected. Oxygen consumption was measured in membrane fractions upon thiosulphate addition, thus linking thiosulphate oxidation to dioxygen reduction, in what constitutes a novel activity among Archaea. The holoenzyme was composed of two subunits of apparent molecular masses of 28 and 16 kDa. The larger subunit appeared to be glycosylated and was identical to DoxA, and the smaller was identical to DoxD. Both subunits had been described previously as a part of the terminal quinol:oxygen oxidoreductase complex (cytochrome aa3). << Less