Enzymes
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline an aromatic L-α-amino acid Identifier CHEBI:84824 Charge 0 Formula C2H4NO2R SMILEShelp_outline [NH3+][C@@H]([*])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 10 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline glyoxylate Identifier CHEBI:36655 (Beilstein: 3903641) help_outline Charge -1 Formula C2HO3 InChIKeyhelp_outline HHLFWLYXYJOTON-UHFFFAOYSA-M SMILEShelp_outline [H]C(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 87 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline an aromatic oxo-acid Identifier CHEBI:73309 Charge -1 Formula C2O3R SMILEShelp_outline [O-]C(=O)C([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline glycine Identifier CHEBI:57305 Charge 0 Formula C2H5NO2 InChIKeyhelp_outline DHMQDGOQFOQNFH-UHFFFAOYSA-N SMILEShelp_outline [NH3+]CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 151 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:10900 | RHEA:10901 | RHEA:10902 | RHEA:10903 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
More general form(s) of this reaction
Publications
-
Purification and characterization of aromatic-amino-acid-glyoxylate aminotransferase from monkey and rat liver.
Harada I., Noguchi T., Kido R.
Aromatic-amino-acid-glyoxylate aminotransferase was highly purified from the mitochondrial fraction of livers from monkey and glucagon-injected rats. The two enzyme preparations showed physical and enzymic properties different from a kynurenine aminotransferase previously described. The two enzyme ... >> More
Aromatic-amino-acid-glyoxylate aminotransferase was highly purified from the mitochondrial fraction of livers from monkey and glucagon-injected rats. The two enzyme preparations showed physical and enzymic properties different from a kynurenine aminotransferase previously described. The two enzymes had nearly identical molecular weights (approximate 80 000), isoelectric points (pH 8.0) and pH optima (pH 8.0 - 8.5). However, a difference in substrate specificity was observed between the two enzymes. Both enzymes utilized glyoxylate, pyruvate, hydroxypyruvate and 2-oxo-4-methyl-thiobutyrate as effective amino acceptors. 2-Oxoglutarate was active for rat enzyme but not for monkey enzyme. With glyoxylate, amino donors were effective in the following order of activity; phenylalanine greater than histidine greater than tyrosine greater than tryptophan greater than 5-hydroxytrypotphan greater than kynurenine for the rat enzyme, and phenylalanine greater than kynurenine greater than histidine greater than tryptophan greater than 5-hydroxy-tryptophan for the monkey enzyme. << Less
Hoppe Seylers Z Physiol Chem 359:481-488(1978) [PubMed] [EuropePMC]
-
Removal of phosphoglycolate in hyperthermophilic archaea.
Michimori Y., Izaki R., Su Y., Fukuyama Y., Shimamura S., Nishimura K., Miwa Y., Hamakita S., Shimosaka T., Makino Y., Takeno R., Sato T., Beppu H., Cann I., Kanai T., Nunoura T., Atomi H.
Many organisms that utilize the Calvin-Benson-Bassham (CBB) cycle for autotrophic growth harbor metabolic pathways to remove and/or salvage 2-phosphoglycolate, the product of the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). It has been presumed that the occurren ... >> More
Many organisms that utilize the Calvin-Benson-Bassham (CBB) cycle for autotrophic growth harbor metabolic pathways to remove and/or salvage 2-phosphoglycolate, the product of the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). It has been presumed that the occurrence of 2-phosphoglycolate salvage is linked to the CBB cycle, and in particular, the C2 pathway to the CBB cycle and oxygenic photosynthesis. Here, we examined 2-phosphoglycolate salvage in the hyperthermophilic archaeon <i>Thermococcus kodakarensis</i>, an obligate anaerobe that harbors a Rubisco that functions in the pentose bisphosphate pathway. <i>T. kodakarensis</i> harbors enzymes that have the potential to convert 2-phosphoglycolate to glycine and serine, and their genes were identified by biochemical and/or genetic analyses. 2-phosphoglycolate phosphatase activity increased 1.6-fold when cells were grown under microaerobic conditions compared to anaerobic conditions. Among two candidates, TK1734 encoded a phosphatase specific for 2-phosphoglycolate, and the enzyme was responsible for 80% of the 2-phosphoglycolate phosphatase activity in <i>T. kodakarensis</i> cells. The TK1734 disruption strain displayed growth impairment under microaerobic conditions, which was relieved upon addition of sodium sulfide. In addition, glycolate was detected in the medium when <i>T. kodakarensis</i> was grown under microaerobic conditions. The results suggest that <i>T. kodakarensis</i> removes 2-phosphoglycolate via a phosphatase reaction followed by secretion of glycolate to the medium. As the Rubisco in <i>T. kodakarensis</i> functions in the pentose bisphosphate pathway and not in the CBB cycle, mechanisms to remove 2-phosphoglycolate in this archaeon emerged independent of the CBB cycle. << Less
Proc Natl Acad Sci U S A 121:e2311390121-e2311390121(2024) [PubMed] [EuropePMC]
This publication is cited by 21 other entries.