Reaction participants Show >> << Hide
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline pyruvate Identifier CHEBI:15361 (Beilstein: 3587721; CAS: 57-60-3) help_outline Charge -1 Formula C3H3O3 InChIKeyhelp_outline LCTONWCANYUPML-UHFFFAOYSA-M SMILEShelp_outline CC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 215 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AMP Identifier CHEBI:456215 Charge -2 Formula C10H12N5O7P InChIKeyhelp_outline UDMBCSSLTHHNCD-KQYNXXCUSA-L SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 508 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,129 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphoenolpyruvate Identifier CHEBI:58702 (Beilstein: 3951723) help_outline Charge -3 Formula C3H2O6P InChIKeyhelp_outline DTBNBXWJWCWCIK-UHFFFAOYSA-K SMILEShelp_outline [O-]C(=O)C(=C)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 39 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:10756 | RHEA:10757 | RHEA:10758 | RHEA:10759 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
M-CSA help_outline |
Publications
-
Substrate binding domains in pyruvate phosphate dikinase.
Carroll L.J., Xu Y., Thrall S.H., Martin B.M., Dunaway-Mariano D.
Proteolysis of Clostridium symbiosum pyruvate phosphate dikinase (PPDK) in its free or phosphorylated state with subtilisin Carlsberg followed two different cleavage pathways. The major pathway involved initial cleavage of the holoenzyme (93 kDa) into a stable 25-kDa N-terminal fragment and transi ... >> More
Proteolysis of Clostridium symbiosum pyruvate phosphate dikinase (PPDK) in its free or phosphorylated state with subtilisin Carlsberg followed two different cleavage pathways. The major pathway involved initial cleavage of the holoenzyme (93 kDa) into a stable 25-kDa N-terminal fragment and transiently stable 67-kDa C-terminal fragment. The 67-kDa fragment was cleaved to generate a stable 35-kDa fragment and an unstable 30-kDa fragment (containing the catalytic histidine). Proteolytic cleavage via the minor pathway divided the holoenzyme into an unstable 37-kDa N-terminal piece (which was further cleaved to the stable 25-kDa fragment produced in the major pathway) and a transiently stable 55-kDa C-terminal fragment. The 55-kDa fragment was then cleaved to produce the stable 35-kDa fragment produced by the major pathway. The cleavage pattern of PPDK complexed with the ATP analog adenyl imidodiphosphate was identical to that of the free enzyme, only the rate of cleavage as slower. In contrast, proteolysis of the phosphorylenzyme-oxalate complex generated the 55-kDa fragment indicating that oxalate binding induces a change in protein conformation. Treatment of PPDK with [1-14C]bromopyruvate followed by proteolysis revealed selective radiolabeling of the stable 35-kDa fragment while similar experiments with [14C]2',3'-dialdehyde adenosine 5'-monophosphate resulted in selective radiolabeling of the stable 25-kDa fragment. These results were interpreted to suggest that PPDK contains several structural domains and that the catalytic histidine, the pyruvate binding site, and the ATP binding site may be located on different domains. << Less
-
Location of the catalytic site for phosphoenolpyruvate formation within the primary structure of Clostridium symbiosum pyruvate phosphate dikinase. 1. Identification of an essential cysteine by chemical modification with [1-14C]bromopyruvate and site-directed mutagenesis.
Xu Y., Yankie L., Shen L., Jung Y.S., Mariano P.S., Dunaway-Mariano D., Martin B.M.
Pyruvate phosphate dikinase (PPDK) catalyzes the interconversion of adenosine 5'-triphosphate (ATP), orthophosphate (Pi), and pyruvate with adenosine 5'-monophosphate (AMP), pyrophosphate (PPi), and phosphoenolpyruvate (PEP). The reaction takes place according to the following steps: (1) E+ATP+P(i ... >> More
Pyruvate phosphate dikinase (PPDK) catalyzes the interconversion of adenosine 5'-triphosphate (ATP), orthophosphate (Pi), and pyruvate with adenosine 5'-monophosphate (AMP), pyrophosphate (PPi), and phosphoenolpyruvate (PEP). The reaction takes place according to the following steps: (1) E+ATP+P(i)<-->E-PP.AMP.P(i), (2) E-PP.AMP.P(i)<-->E-P+AMP+PP(i), and (3) E-P+pyruvate<-->E+PEP, where E represents free enzyme; E-PP, pyrophosphorylenzyme; and E-P, phosphorylenzyme. Steps 1 and 2 comprise the nucleotide partial reaction, and step 3 comprises the pyruvate partial reaction. The present studies were carried out to locate amino acid residues within the primary structure of Clostridium symbiosum PPDK participating in the catalysis of the pyruvate partial reaction. The enzyme was treated with the affinity label [1-14C]bromopyruvate, reduced with NaBH4, proteolyzed with trypsin, and chromatographed on an HPLC column. The radiolabeled tryptic peptide isolate was sequenced to reveal Cys 831 as the site of alkylation. Using PCR techniques Cys 831 was replaced by Ala, and the C831A PPDK mutant formed was then subjected to kinetic analysis. Rapid quench studies of single turnover reactions on the enzyme showed that the mutant is as efficient as wild-type PPDK in catalyzing the nucleotide partial reaction while it is unable to catalyze the pyruvate partial reaction. These results were interpreted as evidence for a role of Cys 831 in pyruvate/PEP binding and/or catalysis. << Less
-
Functional evolution of C(4) pyruvate, orthophosphate dikinase.
Chastain C.J., Failing C.J., Manandhar L., Zimmerman M.A., Lakner M.M., Nguyen T.H.
Pyruvate,orthophosphate dikinase (PPDK) plays a controlling role in the PEP-regeneration phase of the C(4) photosynthetic pathway. Earlier studies have fully documented its biochemical properties and its post-translational regulation by the PPDK regulatory protein (PDRP). However, the question of ... >> More
Pyruvate,orthophosphate dikinase (PPDK) plays a controlling role in the PEP-regeneration phase of the C(4) photosynthetic pathway. Earlier studies have fully documented its biochemical properties and its post-translational regulation by the PPDK regulatory protein (PDRP). However, the question of its evolution into the C(4) pathway has, until recently, received little attention. One assumption concerning this evolution is that changes in catalytic and regulatory properties of PPDK were necessary for the enzyme to fulfil its role in the C(4) pathway. In this study, the functional evolution of PPDK from its ancient origins in the Archaea to its ascension as a photosynthetic enzyme in modern C(4) angiosperms is reviewed. This analysis is accompanied by a comparative investigation into key catalytic and regulatory properties of a C(3) PPDK isoform from Arabidopsis and the C(4) PPDK isoform from Zea mays. From these analyses, it is proposed that PPDK first became functionally seated in C(3) plants as an ancillary glycolytic enzyme and that its transition into a C(4) pathway enzyme involved only minor changes in enzyme properties per se. << Less
-
The pyruvate, orthophosphate dikinase regulatory proteins of Arabidopsis are both bifunctional and interact with the catalytic and nucleotide-binding domains of pyruvate, orthophosphate dikinase.
Astley H.M., Parsley K., Aubry S., Chastain C.J., Burnell J.N., Webb M.E., Hibberd J.M.
Pyruvate orthophosphate dikinase (PPDK) is a key enzyme in C(4) photosynthesis and is also found in C(3) plants. It is post-translationally modified by the PPDK regulatory protein (RP) that possesses both kinase and phosphotransferase activities. Phosphorylation and dephosphorylation of PPDK lea ... >> More
Pyruvate orthophosphate dikinase (PPDK) is a key enzyme in C(4) photosynthesis and is also found in C(3) plants. It is post-translationally modified by the PPDK regulatory protein (RP) that possesses both kinase and phosphotransferase activities. Phosphorylation and dephosphorylation of PPDK lead to inactivation and activation respectively. Arabidopsis thaliana contains two genes that encode chloroplastic (RP1) and cytosolic (RP2) isoforms of RP, and although RP1 has both kinase and phosphotransferase activities, to date RP2 has only been shown to act as a kinase. Here we demonstrate that RP2 is able to catalyse the dephosphorylation of PPDK, although at a slower rate than RP1 under the conditions of our assay. From yeast two-hybrid analysis we propose that RP1 binds to the central catalytic domain of PPDK, and that additional regions towards the carboxy and amino termini are required for a stable interaction between RP2 and PPDK. For 21 highly conserved amino acids in RP1, mutation of 15 of these reduced kinase and phosphotransferase activity, while mutation of six residues had no impact on either activity. We found no mutant in which only one activity was abolished. However, in some chimaeric fusions that comprised the amino and carboxy termini of RP1 and RP2 respectively, the kinase reaction was severely compromised but phosphotransferase activity remained unaffected. These findings are consistent with the findings that both RP1 and RP2 modulate reversibly the activity of PPDK, and possess one bifunctional active site or two separate sites in close proximity. << Less
Plant J. 68:1070-1080(2011) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Increased pyruvate orthophosphate dikinase activity results in an alternative gluconeogenic pathway in Rhizobium (Sinorhizobium) meliloti.
Oesteraas M., Driscoll B.T., Finan T.M.
The formation of phosphoenolpyruvate (PEP) is a major step in the gluconeogenic pathway in which tricarboxylic acid (TCA) cycle intermediates are converted to hexose sugars. In Rhizobium (now Sinorhizobium) meliloti this step is catalysed by the enzyme PEP carboxykinase (PCK) which converts oxaloa ... >> More
The formation of phosphoenolpyruvate (PEP) is a major step in the gluconeogenic pathway in which tricarboxylic acid (TCA) cycle intermediates are converted to hexose sugars. In Rhizobium (now Sinorhizobium) meliloti this step is catalysed by the enzyme PEP carboxykinase (PCK) which converts oxaloacetate to PEP. R. meliloti Pck-mutants grow very poorly with TCA cycle intermediates as the sole source of carbon. Here, the isolation and mapping of suppressor mutations which allow Pck-mutants to grow on succinate and other TCA cycle intermediates is reported. Tn5 insertions which abolished the suppressor phenotype and mapped to the suppressor locus were located within the pod gene encoding pyruvate orthophosphate dikinase (PPDK). Strains carrying suppressor mutations had increased PPDK activity compared to the wild-type. The suppressor phenotype was dependent on the combined activities of malic enzyme and PPDK, which thus represent an alternative route for the formation of PEP in R. meliloti. PPDK activity was not required for symbiotic N2 fixation. << Less