Reaction participants Show >> << Hide
- Name help_outline (3S,4R)-3,4-dihydroxycyclohexa-1,5-diene-1,4-dicarboxylate Identifier CHEBI:57412 Charge -2 Formula C8H6O6 InChIKeyhelp_outline UKFMEOHAOCKDOL-YLWLKBPMSA-L SMILEShelp_outline O[C@H]1C=C(C=C[C@]1(O)C([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,190 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 3,4-dihydroxybenzoate Identifier CHEBI:36241 Charge -1 Formula C7H5O4 InChIKeyhelp_outline YQUVCSBJEUQKSH-UHFFFAOYSA-M SMILEShelp_outline C(=O)(C1=CC(=C(C=C1)O)O)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 26 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 1,006 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,120 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:10744 | RHEA:10745 | RHEA:10746 | RHEA:10747 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Characterization of the terephthalate degradation genes of Comamonas sp. strain E6.
Sasoh M., Masai E., Ishibashi S., Hara H., Kamimura N., Miyauchi K., Fukuda M.
We isolated Comamonas sp. strain E6, which utilizes terephthalate (TPA) as the sole carbon and energy source via the protocatechuate (PCA) 4,5-cleavage pathway. Two almost identical TPA degradation gene clusters, tphRICIA2IA3IBIA1I and tphRIICIIA2IIA3IIBIIA1II, were isolated from this strain. Base ... >> More
We isolated Comamonas sp. strain E6, which utilizes terephthalate (TPA) as the sole carbon and energy source via the protocatechuate (PCA) 4,5-cleavage pathway. Two almost identical TPA degradation gene clusters, tphRICIA2IA3IBIA1I and tphRIICIIA2IIA3IIBIIA1II, were isolated from this strain. Based on amino acid sequence similarity, the genes tphR, tphC, tphA2, tphA3, tphB, and tphA1 were predicted to code, respectively, for an IclR-type transcriptional regulator, a periplasmic TPA binding receptor, the large subunit of the oxygenase component of TPA 1,2-dioxygenase (TPADO), the small subunit of the oxygenase component of TPADO, a 1,2-dihydroxy-3,5-cyclohexadiene-1,4-dicarboxylate (DCD) dehydrogenase, and a reductase component of TPADO. The growth of E6 on TPA was not affected by disruption of either tphA2I or tphA2II singly; however, the tphA2I tphA2II double mutant no longer grew on TPA, suggesting that both TPADO genes are involved in TPA degradation. Introduction of a plasmid carrying tphRIICIIA2IIA3IIBIIA1II conferred the TPA utilization phenotype on Comamonas testosteroni IAM 1152, which is able to grow on PCA but not on TPA. Disruption of either tphRII or tphCII on this plasmid resulted in the loss of the growth of IAM 1152 on TPA, suggesting that these genes are essential to convert TPA to PCA in E6. The genes tphA1II, tphA2II, tphA3II, and tphBII were expressed in Escherichia coli, and the resultant cell extracts containing TphA1II, TphA2II, and TphA3II converted TPA in the presence of NADPH into a product which was transformed to PCA by TphBII. On the basis of these results, TPADO was strongly suggested to be a two-component dioxygenase which consists of the terminal oxygenase component (TphA2 and TphA3) and the reductase (TphA1), and tphB codes for the DCD dehydrogenase. << Less
Appl. Environ. Microbiol. 72:1825-1832(2006) [PubMed] [EuropePMC]
-
Molecular analysis of isophthalate and terephthalate degradation by Comamonas testosteroni YZW-D.
Wang Y.Z., Zhou Y., Zylstra G.J.
Comamonas testosteroni YZW-D was isolated from Passaic River sediment for its ability to degrade isophthalate and terephthalate. Degradation of the two isomeric compounds proceeds via separately inducible catabolic pathways that converge at protocatechuate. Analysis of the catabolic pathways by wh ... >> More
Comamonas testosteroni YZW-D was isolated from Passaic River sediment for its ability to degrade isophthalate and terephthalate. Degradation of the two isomeric compounds proceeds via separately inducible catabolic pathways that converge at protocatechuate. Analysis of the catabolic pathways by which these two isomers are degraded demonstrated that a cis-dihydrodiol intermediate is involved in both pathways. The genes for the conversion of isophthalate and terephthalate to protocatechuate were cloned on a single fragment of genomic DNA from C. testosteroni YZW-D. The two operons were located by subcloning and mutant complementation experiments. The regions coding for the two degradative pathways were sequenced. Analysis of the nucleotide sequence for the isophthalate degradation operon located genes for a dioxygenase, a transport protein, a cis-dihydrodiol dehydrogenase, and a reductase. Analysis of the nucleotide sequence for the terephthalate degradation operon located genes for a regulatory protein, a transport protein, a dioxygenase large subunit, a dioxygenase small subunit, a cis-dihydrodiol dehydrogenase, and a reductase. << Less
Environ. Health Perspect. 103:9-12(1995) [PubMed] [EuropePMC]