Enzymes
UniProtKB help_outline | 1 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline limonene 1,2-epoxide Identifier CHEBI:16431 (CAS: 1195-92-2) help_outline Charge 0 Formula C10H16O InChIKeyhelp_outline CCEFMUBVSUDRLG-UHFFFAOYSA-N SMILEShelp_outline CC(=C)C1CCC2(C)OC2C1 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline limonene-1,2-diol Identifier CHEBI:17219 (Beilstein: 2553629; CAS: 1946-00-5) help_outline Charge 0 Formula C10H18O2 InChIKeyhelp_outline WKZWTZTZWGWEGE-UHFFFAOYSA-N SMILEShelp_outline CC(=C)C1CCC(C)(O)C(O)C1 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:10700 | RHEA:10701 | RHEA:10702 | RHEA:10703 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
QM/MM study of the mechanism of enzymatic limonene 1,2-epoxide hydrolysis.
Hou Q.Q., Sheng X., Wang J.H., Liu Y.J., Liu C.B.
Limonene 1,2-epoxide hydrolase (LEH) is completely different from those of classic epoxide hydrolases (EHs) which catalyze the hydrolysis of epoxides to vicinal diols. A novel concerted general acid catalysis step involving the Asp101-Arg99-Asp132 triad is proposed to play an important role in the ... >> More
Limonene 1,2-epoxide hydrolase (LEH) is completely different from those of classic epoxide hydrolases (EHs) which catalyze the hydrolysis of epoxides to vicinal diols. A novel concerted general acid catalysis step involving the Asp101-Arg99-Asp132 triad is proposed to play an important role in the mechanism. Combined quantum-mechanical/molecular-mechanical (QM/MM) calculations gave activation barriers of 16.9 and 25.1kcal/mol at the B3LYP/6-31G(d,p)//CHARMM level for nucleophilic attack on the more and less substituted epoxide carbons, respectively. Furthermore, the important roles of residues Arg99, Tyr53 and Asn55 on mutated LEH were evaluated by QM/MM-scanned energy mapping. These results may provide an explanation for site-directed mutagenesis. << Less
Biochim Biophys Acta 1824:263-268(2012) [PubMed] [EuropePMC]
-
Limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis DCL14 belongs to a novel class of epoxide hydrolases.
van der Werf M.J., Overkamp K.M., de Bont J.A.M.
An epoxide hydrolase from Rhodococcus erythropolis DCL14 catalyzes the hydrolysis of limonene-1,2-epoxide to limonene-1,2-diol. The enzyme is induced when R. erythropolis is grown on monoterpenes, reflecting its role in the limonene degradation pathway of this microorganism. Limonene-1,2-epoxide h ... >> More
An epoxide hydrolase from Rhodococcus erythropolis DCL14 catalyzes the hydrolysis of limonene-1,2-epoxide to limonene-1,2-diol. The enzyme is induced when R. erythropolis is grown on monoterpenes, reflecting its role in the limonene degradation pathway of this microorganism. Limonene-1,2-epoxide hydrolase was purified to homogeneity. It is a monomeric cytoplasmic enzyme of 17 kDa, and its N-terminal amino acid sequence was determined. No cofactor was required for activity of this colorless enzyme. Maximal enzyme activity was measured at pH 7 and 50 degrees C. None of the tested inhibitors or metal ions inhibited limonene-1,2-epoxide hydrolase activity. Limonene-1,2-epoxide hydrolase has a narrow substrate range. Of the compounds tested, only limonene-1,2-epoxide, 1-methylcyclohexene oxide, cyclohexene oxide, and indene oxide were substrates. This report shows that limonene-1,2-epoxide hydrolase belongs to a new class of epoxide hydrolases based on (i) its low molecular mass, (ii) the absence of any significant homology between the partial amino acid sequence of limonene-1,2-epoxide hydrolase and amino acid sequences of known epoxide hydrolases, (iii) its pH profile, and (iv) the inability of 2-bromo-4'-nitroacetophenone, diethylpyrocarbonate, 4-fluorochalcone oxide, and 1, 10-phenanthroline to inhibit limonene-1,2-epoxide hydrolase activity. << Less
-
The Rhodococcus erythropolis DCL14 limonene-1,2-epoxide hydrolase gene encodes an enzyme belonging to a novel class of epoxide hydrolases.
Barbirato F., Verdoes J.C., de Bont J.A.M., van der Werf M.J.
Recently, we reported the purification of the novel enzyme limonene-1,2-epoxide hydrolase involved in limonene degradation by Rhodococcus erythropolis DCL14. The N-terminal amino acid sequence of the purified enzyme was used to design two degenerate primers at the beginning and the end of the 50 a ... >> More
Recently, we reported the purification of the novel enzyme limonene-1,2-epoxide hydrolase involved in limonene degradation by Rhodococcus erythropolis DCL14. The N-terminal amino acid sequence of the purified enzyme was used to design two degenerate primers at the beginning and the end of the 50 amino acids long stretch. Subsequently, the complete limonene-1,2-epoxide hydrolase gene (limA) was isolated from a genomic library of R. erythropolis DCL14 using a combination of PCR and colony hybridization. The limA gene encoded a 149-residue polypeptide with a deduced molecular mass of 16.5 kDa. It was functionally expressed in Escherichia coli. The amino acid sequence of limA contains neither any of the conserved regions of the alpha,beta-hydrolase fold enzymes, to which most of the previously reported epoxide hydrolases belong, nor any of the conserved motifs present in leukotriene A4 hydrolase. The structural data presented in this paper confirm previous physical and biochemical findings [van der Werf et al. (1998) J. Bacteriol. 180, 5052-5057] that limonene-1,2-epoxide hydrolase is the first member of a new class of epoxide hydrolases. << Less
-
Structure of Rhodococcus erythropolis limonene-1,2-epoxide hydrolase reveals a novel active site.
Arand M., Hallberg B.M., Zou J., Bergfors T., Oesch F., van der Werf M.J., de Bont J.A., Jones T.A., Mowbray S.L.
Epoxide hydrolases are essential for the processing of epoxide-containing compounds in detoxification or metabolism. The classic epoxide hydrolases have an alpha/beta hydrolase fold and act via a two-step reaction mechanism including an enzyme-substrate intermediate. We report here the structure o ... >> More
Epoxide hydrolases are essential for the processing of epoxide-containing compounds in detoxification or metabolism. The classic epoxide hydrolases have an alpha/beta hydrolase fold and act via a two-step reaction mechanism including an enzyme-substrate intermediate. We report here the structure of the limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis, solved using single-wavelength anomalous dispersion from a selenomethionine-substituted protein and refined at 1.2 A resolution. This enzyme represents a completely different structure and a novel one-step mechanism. The fold features a highly curved six-stranded mixed beta-sheet, with four alpha-helices packed onto it to create a deep pocket. Although most residues lining this pocket are hydrophobic, a cluster of polar groups, including an Asp-Arg-Asp triad, interact at its deepest point. Site-directed mutagenesis supports the conclusion that this is the active site. Further, a 1.7 A resolution structure shows the inhibitor valpromide bound at this position, with its polar atoms interacting directly with the residues of the triad. We suggest that several bacterial proteins of currently unknown function will share this structure and, in some cases, catalytic properties. << Less
-
Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene.
van der Werf M.J., Swarts H.J., de Bont J.A.M.
Strain DCL14, which is able to grow on limonene as a sole source of carbon and energy, was isolated from a freshwater sediment sample. This organism was identified as a strain of Rhodococcus erythropolis by chemotaxonomic and genetic studies. R. erythropolis DCL14 also assimilated the terpenes lim ... >> More
Strain DCL14, which is able to grow on limonene as a sole source of carbon and energy, was isolated from a freshwater sediment sample. This organism was identified as a strain of Rhodococcus erythropolis by chemotaxonomic and genetic studies. R. erythropolis DCL14 also assimilated the terpenes limonene-1,2-epoxide, limonene-1,2-diol, carveol, carvone, and (-)-menthol, while perillyl alcohol was not utilized as a carbon and energy source. Induction tests with cells grown on limonene revealed that the oxygen consumption rates with limonene-1,2-epoxide, limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and carveol were high. Limonene-induced cells of R. erythropolis DCL14 contained the following four novel enzymatic activities involved in the limonene degradation pathway of this microorganism: a flavin adenine dinucleotide- and NADH-dependent limonene 1, 2-monooxygenase activity, a cofactor-independent limonene-1, 2-epoxide hydrolase activity, a dichlorophenolindophenol-dependent limonene-1,2-diol dehydrogenase activity, and an NADPH-dependent 1-hydroxy-2-oxolimonene 1,2-monooxygenase activity. Product accumulation studies showed that (1S,2S,4R)-limonene-1,2-diol, (1S, 4R)-1-hydroxy-2-oxolimonene, and (3R)-3-isopropenyl-6-oxoheptanoate were intermediates in the (4R)-limonene degradation pathway. The opposite enantiomers [(1R,2R,4S)-limonene-1,2-diol, (1R, 4S)-1-hydroxy-2-oxolimonene, and (3S)-3-isopropenyl-6-oxoheptanoate] were found in the (4S)-limonene degradation pathway, while accumulation of (1R,2S,4S)-limonene-1,2-diol from (4S)-limonene was also observed. These results show that R. erythropolis DCL14 metabolizes both enantiomers of limonene via a novel degradation pathway that starts with epoxidation at the 1,2 double bond forming limonene-1,2-epoxide. This epoxide is subsequently converted to limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and 7-hydroxy-4-isopropenyl-7-methyl-2-oxo-oxepanone. This lactone spontaneously rearranges to form 3-isopropenyl-6-oxoheptanoate. In the presence of coenzyme A and ATP this acid is converted further, and this finding, together with the high levels of isocitrate lyase activity in extracts of limonene-grown cells, suggests that further degradation takes place via the beta-oxidation pathway. << Less
Appl. Environ. Microbiol. 65:2092-2102(1999) [PubMed] [EuropePMC]
This publication is cited by 14 other entries.
Comments
Published in: "Substrate specificity and stereospecifity of limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis DCL14; an enzyme showing sequential and enantioconvergent substrate conversion" Van der Werf, M.J.; Orru, R.V.A.; Overkamp, K.M.; Swarts, H.J.; Ospiran, I.; Steinreiber, A.; de Bont, J.A.M.; Faber, K.; Appl. Microbiol. Biotechnol. 52, 380-385 (1999)