Reaction participants Show >> << Hide
- Name help_outline 2-oxoglutarate Identifier CHEBI:16810 (Beilstein: 3664503; CAS: 64-15-3) help_outline Charge -2 Formula C5H4O5 InChIKeyhelp_outline KPGXRSRHYNQIFN-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CCC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 425 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline dTDP-4-amino-4,6-dideoxy-α-D-galactose Identifier CHEBI:68492 Charge -1 Formula C16H26N3O14P2 InChIKeyhelp_outline UIVJXHWSIFBBCY-FQLHZTMTSA-M SMILEShelp_outline C[C@H]1O[C@H](OP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H](C[C@@H]2O)n2cc(C)c(=O)[nH]c2=O)[C@H](O)[C@@H](O)[C@H]1[NH3+] 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline dTDP-4-dehydro-6-deoxy-α-D-glucose Identifier CHEBI:57649 (Beilstein: 7737591) help_outline Charge -2 Formula C16H22N2O15P2 InChIKeyhelp_outline PSXWNITXWWECNY-UCBTUHGZSA-L SMILEShelp_outline C[C@H]1O[C@H](OP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H](C[C@@H]2O)n2cc(C)c(=O)[nH]c2=O)[C@H](O)[C@@H](O)C1=O 2D coordinates Mol file for the small molecule Search links Involved in 11 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-glutamate Identifier CHEBI:29985 (CAS: 11070-68-1) help_outline Charge -1 Formula C5H8NO4 InChIKeyhelp_outline WHUUTDBJXJRKMK-VKHMYHEASA-M SMILEShelp_outline [NH3+][C@@H](CCC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 244 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:10368 | RHEA:10369 | RHEA:10370 | RHEA:10371 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Characterization and investigation of substrate specificity of the sugar aminotransferase WecE from E. coli K12.
Hwang B.Y., Lee H.J., Yang Y.H., Joo H.S., Kim B.G.
WecE gene, encoding a sugar aminotransferase (SAT), has been cloned from E. coli K12 and expressed in E. coli BL21 (DE3). The enzyme was purified and characterized. WecE used TDP-4-keto-6-deoxy-D-glucose (TDP-D-Glc4O) and L-glutamate as a good amino acceptor and donor, respectively, leading to the ... >> More
WecE gene, encoding a sugar aminotransferase (SAT), has been cloned from E. coli K12 and expressed in E. coli BL21 (DE3). The enzyme was purified and characterized. WecE used TDP-4-keto-6-deoxy-D-glucose (TDP-D-Glc4O) and L-glutamate as a good amino acceptor and donor, respectively, leading to the production of TDP-4-amino-4,6-dideoxy-D-galactose (TDP-Fuc4N), which was identified by NMR studies. WecE also showed a similar activity for TDP-4-keto 6-deoxy-D-mannose (TDP-D-Man4O), but no activity for GDP-4-keto-6-deoxy-D-mannose (GDP-D-Man4O), suggesting that the nucleotide moiety would become a key determinant to the substrate specificity of amine acceptor for the activity of the SAT. Multiple alignments showed that SATs have four highly conserved motifs located around the active site and could be divided into three subgroups (VIalpha, VIbeta, and VIgamma) that might be closely related with their substrate specificities. << Less
-
Thymidine diphosphate 4-acetamido-4,6-dideoxyhexoses. IV. Purification and properties of thymidine diphosphate 4-keto-6-deoxy-D-glucose transaminase from Pasteurella pseudotuberculosis.
Oashi H., Matsuhashi M., Matsuhashi S.
-
Biochemical characterization of dTDP-D-Qui4N and dTDP-D-Qui4NAc biosynthetic pathways in Shigella dysenteriae type 7 and Escherichia coli O7.
Wang Y., Xu Y., Perepelov A.V., Qi Y., Knirel Y.A., Wang L., Feng L.
O-antigen variation due to the presence of different types of sugars and sugar linkages is important for the survival of bacteria threatened by host immune systems. The O antigens of Shigella dysenteriae type 7 and Escherichia coli O7 contain 4-(N-acetylglycyl)amino-4,6-dideoxy-d-glucose (d-Qui4NG ... >> More
O-antigen variation due to the presence of different types of sugars and sugar linkages is important for the survival of bacteria threatened by host immune systems. The O antigens of Shigella dysenteriae type 7 and Escherichia coli O7 contain 4-(N-acetylglycyl)amino-4,6-dideoxy-d-glucose (d-Qui4NGlyAc) and 4-acetamido-4,6-dideoxy-d-glucose (d-Qui4NAc), respectively, which are sugars not often found in studied polysaccharides. In this study, we characterized the biosynthetic pathways for dTDP-d-Qui4N and dTDP-d-Qui4NAc (the nucleotide-activated precursors of d-Qui4NGlyAc and d-Qui4NAc in O antigens). Predicted genes involved in the synthesis of the two sugars were cloned, and the gene products were overexpressed and purified as His-tagged fusion proteins. In vitro enzymatic reactions were carried out using the purified proteins, and the reaction products were analyzed by capillary electrophoresis, electrospray ionization-mass spectrometry, and nuclear magnetic resonance spectroscopy. It is shown that in S. dysenteriae type 7 and E. coli O7, dTDP-d-Qui4N is synthesized from alpha-d-glucose-1-phosphate in three reaction steps catalyzed by glucose-1-phosphate thymidyltransferase (RmlA), dTDP-d-glucose 4,6-dehydratase (RmlB), and dTDP-4-keto-6-deoxy-d-glucose aminotransferase (VioA). An additional acetyltransferase (VioB) catalyzes the conversion of dTDP-d-Qui4N into dTDP-d-Qui4NAc in E. coli O7. Kinetic parameters and some other properties of VioA and VioB are described and differences between VioA proteins from S. dysenteriae type 7 (VioA(D7)) and E. coli O7 (VioA(O7)) discussed. To our knowledge, this is the first time that functions of VioA and VioB have been biochemically characterized. This study provides valuable enzyme sources for the production of dTDP-d-Qui4N and dTDP-d-Qui4NAc, which are potentially useful in the pharmaceutical industry for drug development. << Less
J. Bacteriol. 189:8626-8635(2007) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.