Enzymes
UniProtKB help_outline | 4 proteins |
Reaction participants Show >> << Hide
- Name help_outline D-glyceraldehyde 3-phosphate Identifier CHEBI:59776 (Beilstein: 6139851) help_outline Charge -2 Formula C3H5O6P InChIKeyhelp_outline LXJXRIRHZLFYRP-VKHMYHEASA-L SMILEShelp_outline [H]C(=O)[C@H](O)COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 33 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,002 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,190 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (2R)-3-phospho-glyceroyl phosphate Identifier CHEBI:57604 Charge -4 Formula C3H4O10P2 InChIKeyhelp_outline LJQLQCAXBUHEAZ-UWTATZPHSA-J SMILEShelp_outline O[C@H](COP([O-])([O-])=O)C(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 11 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,120 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:10300 | RHEA:10301 | RHEA:10302 | RHEA:10303 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline | ||||
Reactome help_outline |
Publications
-
Functional complementation of an Escherichia coli gap mutant supports an amphibolic role for NAD(P)-dependent glyceraldehyde-3-phosphate dehydrogenase of Synechocystis sp. strain PCC 6803.
Valverde F., Losada M., Serrano A.
The gap-2 gene, encoding the NAD(P)-dependent D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH2) of the cyanobacterium Synechocystis sp. strain PCC 6803, was cloned by functional complementation of an Escherichia coli gap mutant with a genomic DNA library; this is the first time that this cloning ... >> More
The gap-2 gene, encoding the NAD(P)-dependent D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH2) of the cyanobacterium Synechocystis sp. strain PCC 6803, was cloned by functional complementation of an Escherichia coli gap mutant with a genomic DNA library; this is the first time that this cloning strategy has been used for a GAPDH involved in photosynthetic carbon assimilation. The Synechocystis DNA region able to complement the E. coli gap mutant was narrowed down to 3 kb and fully sequenced. A single complete open reading frame of 1,011 bp encoding a protein of 337 amino acids was found and identified as the putative gap-2 gene identified in the complete genome sequence of this organism. Determination of the transcriptional start point, identification of putative promoter and terminator sites, and orientation of the truncated flanking genes suggested the gap-2 transcript should be monocystronic, a possibility further confirmed by Northern blot studies. Both natural and recombinant homotetrameric GAPDH2s were purified and found to exhibit virtually identical physicochemical and kinetic properties. The recombinant GAPDH2 showed the dual pyridine nucleotide specificity characteristic of the native cyanobacterial enzyme, and similar ratios of NAD-to NADP-dependent activities were found in cell extracts from Synechocystis as well as in those from the complemented E. coli clones. The deduced amino acid sequence of Synechocystis GAPDH2 presented a high degree of identity with sequences of the chloroplastic NADP-dependent enzymes. In agreement with this result, immunoblot analysis using monospecific antibodies raised against GAPDH2 showed the presence of the 38-kDa GAPDH subunit not only in crude extracts from the gap-2-expressing E. coli clones and all cyanobacteria that were tested but also in those from eukaryotic microalgae and plants. Western and Northern blot experiments showed that gap-2 is conspicuously expressed, although at different levels, in Synechocystis cells grown in different metabolic regimens, even under chemoheterotrophic conditions. A possible amphibolic role of the cyanobacterial GAPDH2, namely, anabolic for photosynthetic carbon assimilation and catabolic for carbohydrate degradative pathways, is discussed. << Less
J. Bacteriol. 179:4513-4522(1997) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium.
Fillinger S., Boschi-Muller S., Azza S., Dervyn E., Branlant G., Aymerich S.
Bacillus subtilis possesses two similar putative phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPDH) encoding genes, gap (renamed gapA) and gapB. A gapA mutant was unable to grow on glycolytic carbon sources, although it developed as well as the wild-type strain on gluconeogenic carbo ... >> More
Bacillus subtilis possesses two similar putative phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPDH) encoding genes, gap (renamed gapA) and gapB. A gapA mutant was unable to grow on glycolytic carbon sources, although it developed as well as the wild-type strain on gluconeogenic carbon sources. A gapB mutant showed the opposite phenotype. Purified GapB showed a 50-fold higher GAPDHase activity with NADP(+) than with NAD(+), with K(m) values of 0.86 and 5.7 mm, respectively. lacZ reporter gene fusions revealed that the gapB gene is transcribed during gluconeogenesis and repressed during glycolysis. Conversely, gapA transcription is 5-fold higher under glycolytic conditions than during gluconeogenesis. GAPDH activity assays in crude extracts of wild-type and mutant strains confirmed this differential expression pattern at the enzymatic level. Genetic analyses demonstrated that gapA transcription is repressed by the yvbQ (renamed cggR) gene product and indirectly stimulated by CcpA. Thus, the same enzymatic step is catalyzed in B. subtilis by two enzymes specialized, through the regulation of their synthesis and their enzymatic characteristics, either in catabolism (GapA) or in anabolism (GapB). Such a dual enzymatic system for this step of the central carbon metabolism is described for the first time in a nonphotosynthetic eubacterium, but genomic analyses suggest that it could be a widespread feature. << Less
J. Biol. Chem. 275:14031-14037(2000) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.