Reaction participants Show >> << Hide
- Name help_outline D-glucosamine 6-phosphate Identifier CHEBI:58725 Charge -1 Formula C6H13NO8P InChIKeyhelp_outline XHMJOUIAFHJHBW-IVMDWMLBSA-M SMILEShelp_outline [NH3+][C@H]1C(O)O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 10 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline acetyl-CoA Identifier CHEBI:57288 (Beilstein: 8468140) help_outline Charge -4 Formula C23H34N7O17P3S InChIKeyhelp_outline ZSLZBFCDCINBPY-ZSJPKINUSA-J SMILEShelp_outline CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 361 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline N-acetyl-D-glucosamine 6-phosphate Identifier CHEBI:57513 (Beilstein: 5355763) help_outline Charge -2 Formula C8H14NO9P InChIKeyhelp_outline BRGMHAYQAZFZDJ-RTRLPJTCSA-L SMILEShelp_outline CC(=O)N[C@H]1C(O)O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 13 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,511 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:10292 | RHEA:10293 | RHEA:10294 | RHEA:10295 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
Reactome help_outline |
Publications
-
Cloning and characterization of the murine glucosamine-6-phosphate acetyltransferase EMeg32: differential expression and intracellular membrane association.
Boehmelt G., Fialka I., Brothers G., McGinley M.D., Patterson S.D., Rong M., Hui C.C., Chung S., Huber L.A., Mak T.W., Iscove N.N.
N-Linked glycosylation is a post-translational modification occurring in many eukaryotic secreted and surface-bound proteins and has impact on diverse physiological and pathological processes. Similarly important is the generation of glycosylphosphatidylinositol linkers, which anchor membrane prot ... >> More
N-Linked glycosylation is a post-translational modification occurring in many eukaryotic secreted and surface-bound proteins and has impact on diverse physiological and pathological processes. Similarly important is the generation of glycosylphosphatidylinositol linkers, which anchor membrane proteins to the cell. Both protein modifications depend on the central nucleotide sugar UDP-N-acetylglucosamine (UDP-GlcNAc). The enzymatic reactions leading to generation of nucleotide sugars are established, yet most of the respective genes still await cloning. We describe the characterization of such a gene, EMeg32, which we identified based on its differential expression in murine hematopoietic precursor cells. We further demonstrate regulated expression during embryogenesis. EMeg32 codes for a 184-amino acid protein exhibiting glucosamine-6-phosphate acetyltransferase activity. It thereby holds a key position in the pathway toward de novo UDP-GlcNAc synthesis. Surprisingly, the protein associates with the cytoplasmic side of various intracellular membranes, accumulates prior to mitosis, and copurifies with the cdc48 homolog p97/valosin-containing protein. << Less
-
A novel short-root gene encodes a glucosamine-6-phosphate acetyltransferase required for maintaining normal root cell shape in rice.
Jiang H., Wang S., Dang L., Wang S., Chen H., Wu Y., Jiang X., Wu P.
Glycosylation is a posttranslational modification occurring in many secreted and membrane-associated proteins in eukaryotes. It plays important roles in both physiological and pathological processes. Most of these protein modifications depend on UDP-N-acetylglucosamine. In this study, a T-DNA inse ... >> More
Glycosylation is a posttranslational modification occurring in many secreted and membrane-associated proteins in eukaryotes. It plays important roles in both physiological and pathological processes. Most of these protein modifications depend on UDP-N-acetylglucosamine. In this study, a T-DNA insertional rice (Oryza sativa) mutant exhibiting a temperature-sensitive defect in root elongation was isolated. Genetic and molecular analysis indicated that the mutated phenotype was caused by loss of function of a gene encoding a glucosamine-6-P acetyltransferase (designated OsGNA1), which is involved in de novo UDP-N-acetylglucosamine biosynthesis. The aberrant root morphology of the gna1 mutant includes shortening of roots, disruption of microtubules, and shrinkage of cells in the root elongation zone. Our observations support the idea that protein glycosylation plays a key role in cell metabolism, microtubule stabilization, and cell shape in rice roots. << Less
-
Crystal structure and functional characterization of a glucosamine-6-phosphate N-acetyltransferase from Arabidopsis thaliana.
Riegler H., Herter T., Grishkovskaya I., Lude A., Ryngajllo M., Bolger M.E., Essigmann B., Usadel B.
GlcNAc (N-acetylglucosamine) is an essential part of the glycan chain in N-linked glycoproteins. It is a building block for polysaccharides such as chitin, and several glucosaminoglycans and proteins can be O-GlcNAcylated. The deacetylated form, glucosamine, is an integral part of GPI (glycosylpho ... >> More
GlcNAc (N-acetylglucosamine) is an essential part of the glycan chain in N-linked glycoproteins. It is a building block for polysaccharides such as chitin, and several glucosaminoglycans and proteins can be O-GlcNAcylated. The deacetylated form, glucosamine, is an integral part of GPI (glycosylphosphatidylinositol) anchors. Both are incorporated into polymers by glycosyltransferases that utilize UDP-GlcNAc. This UDP-sugar is synthesized in a short pathway comprising four steps starting from fructose 6-phosphate. GNA (glucosamine-6-phosphate N-acetyltransferase) catalyses the second of these four reactions in the de novo synthesis in eukaryotes. A phylogenetic analysis revealed that only one GNA isoform can be found in most of the species investigated and that the most likely Arabidopsis candidate is encoded by the gene At5g15770 (AtGNA). qPCR (quantitative PCR) revealed the ubiquitous expression of AtGNA in all organs of Arabidopsis plants. Heterologous expression of AtGNA showed that it is highly active between pH 7 and 8 and at temperatures of 30-40°C. It showed Km values of 231 μM for glucosamine 6-phosphate and 33 μM for acetyl-CoA respectively and a catalytic efficiency comparable with that of other GNAs characterized. The solved crystal structure of AtGNA at a resolution of 1.5 Å (1 Å=0.1 nm) revealed a very high structural similarity to crystallized GNA proteins from Homo sapiens and Saccharomyces cerevisiae despite less well conserved protein sequence identity. << Less