Enzymes
UniProtKB help_outline | 2 proteins |
Reaction participants Show >> << Hide
- Name help_outline citrate Identifier CHEBI:16947 (Beilstein: 1884707; CAS: 126-44-3) help_outline Charge -3 Formula C6H5O7 InChIKeyhelp_outline KRKNYBCHXYNGOX-UHFFFAOYSA-K SMILEShelp_outline OC(CC([O-])=O)(CC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 31 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline cis-aconitate Identifier CHEBI:16383 Charge -3 Formula C6H3O6 InChIKeyhelp_outline GTZCVFVGUGFEME-IWQZZHSRSA-K SMILEShelp_outline [O-]C(=O)C\C(=C\C([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:10228 | RHEA:10229 | RHEA:10230 | RHEA:10231 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
First biochemical characterization of a methylcitric acid cycle from Bacillus subtilis strain 168.
Reddick J.J., Sirkisoon S., Dahal R.A., Hardesty G., Hage N.E., Booth W.T., Quattlebaum A.L., Mills S.N., Meadows V.G., Adams S.L.H., Doyle J.S., Kiel B.E.
The genome of Bacillus subtilis strain 168 contains the mother cell metabolic gene (mmg) operon that encodes homologues from the methylcitric acid cycle. We showed that the three genes, mmgDE and yqiQ(mmgF), provide three of the five steps of the methylcitric acid cycle. We also showed that the fo ... >> More
The genome of Bacillus subtilis strain 168 contains the mother cell metabolic gene (mmg) operon that encodes homologues from the methylcitric acid cycle. We showed that the three genes, mmgDE and yqiQ(mmgF), provide three of the five steps of the methylcitric acid cycle. We also showed that the fourth step can be supplied by citB (aconitase), and we suggest that the fifth missing step, the propionyl-CoA synthetase, is probably skipped because the β-oxidation of methyl-branched fatty acids by the enzymes encoded by mmgABC should produce propionyl-CoA. We also noted interesting enzymology for MmgD and MmgE. First, MmgD is a bifunctional citrate synthase/2-methylcitrate synthase with 2.3-fold higher activity as a 2-methylcitrate synthase. This enzyme catalyzes the formation of either (2S,3R)- or (2R,3S)-2-methylcitrate, but reports of 2-methylcitrate synthases from other species indicated that they produced the (2S,3S) isomer. However, we showed that MmgD and PrpC (from Escherichia coli) in fact produce the same stereoisomer. Second, the MmgE enzyme is not a stereospecific 2-methylcitrate dehydratase because it can dehydrate at least two of the four diastereomers of 2-methylcitrate to yield either (E)-2-methylaconitate or (Z)-2-methylaconitate. We also showed for the first time that the E. coli homologue PrpD exhibited the same lack of stereospecificity. However, the physiological pathways proceed via (Z)-2-methylaconitate, which served as the substrate for the citB enzyme in the synthesis of 2-methylisocitrate. We completed our characterization of this pathway by showing that the 2-methylisocitrate produced by CitB is converted to pyruvate and succinate by the enzyme YqiQ(MmgF). << Less
Biochemistry 56:5698-5711(2017) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
The purification of aconitase.
MORRISON J.F.
Biochem J 56:99-105(1954) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Crystal structures of aconitase with trans-aconitate and nitrocitrate bound.
Lauble H., Kennedy M.C., Beinert H., Stout C.D.
Crystal structures of mitochondrial aconitase with the inhibitors trans-aconitate and nitrocitrate bound to the [4Fe-4S] cluster have been solved and refined at 2.05 A resolution with R-factors of 0.168 and 0.172, respectively. Crystallization of aconitase with the substrates citrate and cis-aconi ... >> More
Crystal structures of mitochondrial aconitase with the inhibitors trans-aconitate and nitrocitrate bound to the [4Fe-4S] cluster have been solved and refined at 2.05 A resolution with R-factors of 0.168 and 0.172, respectively. Crystallization of aconitase with the substrates citrate and cis-aconitate has not been possible because the enzyme turns over and selects enzyme with isocitrate bound into the crystal lattice. Therefore we have analyzed crystal structures of the enzyme complexed with inhibitor analogs of these two substrates. The structure with nitrocitrate bound provides a model for citrate binding. The structure with trans-aconitate bound provides a model for cis-aconitate binding in two ways: Fe4 of the [4Fe-4S] cluster is five-coordinate and the carbon at the C beta position is trigonal. These results allow the model for the reaction mechanism to be extended to all three natural substrates of aconitase. The results support a model in which citrate and isocitrate form similar chelate structures related by 180 degrees rotation about the C alpha-C beta bond while the intermediate cis-aconitate binds in either of two ways (citrate mode or isocitrate mode). In both inhibitor complexes a H2O molecule is also bound to Fe4. In the structure with nitrocitrate bound, partial occupancy of sulfate in the active site is observed accompanied by hydroxyl binding to Fe4. Comparison of the structures with isocitrate, trans-aconitate, nitrocitrate and sulfate bound reveals preferred orientations for the three types of oxygens ligated to Fe4 (carboxyl, hydroxyl and H2O) supporting the proposed roles for His101, Asp165 and His167 in the catalytic mechanism. << Less
J Mol Biol 237:437-451(1994) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
Comments
RHEA:10228 part of RHEA:10336