Enzymes
UniProtKB help_outline | 420 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline (3R)-hydroxybutanoate dimer Identifier CHEBI:10979 Charge -1 Formula C8H13O5 InChIKeyhelp_outline RILHUWWTCSDPAN-PHDIDXHHSA-M SMILEShelp_outline O[C@@H](CC(O[C@@H](CC([O-])=O)C)=O)C 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (R)-3-hydroxybutanoate Identifier CHEBI:10983 (Beilstein: 6114857) help_outline Charge -1 Formula C4H7O3 InChIKeyhelp_outline WHBMMWSBFZVSSR-GSVOUGTGSA-M SMILEShelp_outline C[C@@H](O)CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 9 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:10172 | RHEA:10173 | RHEA:10174 | RHEA:10175 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
beta-Hydroxybutyric dehydrogenase and dimer hydrolase of Pseudomonas lemoignei.
Delafield F.P., Cooksey K.E., Doudoroff M.
-
Purification and properties of an intracellular 3-hydroxybutyrate-oligomer hydrolase (PhaZ2) in Ralstonia eutropha H16 and its identification as a novel intracellular poly(3-hydroxybutyrate) depolymerase.
Kobayashi T., Shiraki M., Abe T., Sugiyama A., Saito T.
An intracellular 3-hydroxybutyrate (3HB)-oligomer hydrolase (PhaZ2(Reu)) of Ralstonia eutropha was purified from Escherichia coli harboring a plasmid containing phaZ2(Reu). The purified enzyme hydrolyzed linear and cyclic 3HB-oligomers. Although it did not degrade crystalline poly(3-hydroxybutyrat ... >> More
An intracellular 3-hydroxybutyrate (3HB)-oligomer hydrolase (PhaZ2(Reu)) of Ralstonia eutropha was purified from Escherichia coli harboring a plasmid containing phaZ2(Reu). The purified enzyme hydrolyzed linear and cyclic 3HB-oligomers. Although it did not degrade crystalline poly(3-hydroxybutyrate) (PHB), the purified enzyme degraded artificial amorphous PHB at a rate similar to that of the previously identified intracellular PHB (iPHB) depolymerase (PhaZ1(Reu)). The enzyme appeared to be an endo-type hydrolase, since it actively hydrolyzed cyclic 3HB-oligomers. However, it degraded various linear 3HB-oligomers and amorphous PHB in the fashion of an exo-type hydrolase, releasing one monomer unit at a time. PhaZ2 was found to bind to PHB inclusion bodies and as a soluble enzyme to cell-free supernatant fractions in R. eutropha; in contrast, PhaZ1 bound exclusively to the inclusion bodies. When R. eutropha H16 was cultivated in a nutrient-rich medium, the transient deposition of PHB was observed: the content of PHB was maximized in the log growth phase (12 h, ca. 14% PHB of dry cell weight) and decreased to a very low level in the stationary phase (ca. 1% of dry cell weight). In each phaZ1-null mutant and phaZ2-null mutant, the PHB content in the cell increased to ca. 5% in the stationary phase. A double mutant lacking both phaZ1 and phaZ2 showed increased PHB content in the log phase (ca. 20%) and also an elevated PHB level (ca. 8%) in the stationary phase. These results indicate that PhaZ2 is a novel iPHB depolymerase, which participates in the mobilization of PHB in R. eutropha along with PhaZ1. << Less
J. Bacteriol. 185:3485-3490(2003) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Novel intracellular 3-hydroxybutyrate-oligomer hydrolase in Wautersia eutropha H16.
Kobayashi T., Uchino K., Abe T., Yamazaki Y., Saito T.
Wautersia eutropha H16 (formerly Ralstonia eutropha) mobilizes intracellularly accumulated poly(3-hydroxybutyrate) (PHB) with intracellular poly(3-hydroxybutyrate) depolymerases. In this study, a novel intracellular 3-hydroxybutyrate-oligomer hydrolase (PhaZc) gene was cloned and overexpressed in ... >> More
Wautersia eutropha H16 (formerly Ralstonia eutropha) mobilizes intracellularly accumulated poly(3-hydroxybutyrate) (PHB) with intracellular poly(3-hydroxybutyrate) depolymerases. In this study, a novel intracellular 3-hydroxybutyrate-oligomer hydrolase (PhaZc) gene was cloned and overexpressed in Escherichia coli. Then PhaZc was purified and characterized. Immunoblot analysis with polyclonal antiserum against PhaZc revealed that most PhaZc is present in the cytosolic fraction and a small amount is present in the poly(3-hydroxybutyrate) inclusion bodies of W. eutropha. PhaZc degraded various 3-hydroxybutyrate oligomers at a high specific activity and artificial amorphous poly(3-hydroxybutyrate) at a lower specific activity. Native PHB granules and semicrystalline PHB were not degraded by PhaZc. A PhaZ deletion mutation enhanced the deposition of PHB in the logarithmic phase in nutrient-rich medium. PhaZc differs from the hydrolases of W. eutropha previously reported and is a novel type of intracellular 3-hydroxybutyrate-oligomer hydrolase, and it participates in the mobilization of PHB along with other hydrolases. << Less
J. Bacteriol. 187:5129-5135(2005) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Roles of poly(3-hydroxybutyrate) depolymerase and 3HB-oligomer hydrolase in bacterial PHB metabolism.
Sugiyama A., Kobayashi T., Shiraki M., Saito T.
Many poly-3-hydroxybutyrate (PHB)-degrading enzymes have been studied. But biological roles of 3HB-oligomer hydrolases (3HBOHs) and how PHB depolymerases (PHBDPs) and 3HBOHs cooperate in PHB metabolism are not fully elucidated. In this study, several PHBDPs and 3HBOHs from three types of bacteria ... >> More
Many poly-3-hydroxybutyrate (PHB)-degrading enzymes have been studied. But biological roles of 3HB-oligomer hydrolases (3HBOHs) and how PHB depolymerases (PHBDPs) and 3HBOHs cooperate in PHB metabolism are not fully elucidated. In this study, several PHBDPs and 3HBOHs from three types of bacteria were purified, and their substrate specificity, kinetic properties, and degradation products were investigated. From the results, PHBDP and 3HBOH seemed to play a role in PHB metabolism in three types of bacteria, as follows: (A) In Ralstonia pickettii T1, an extracellular PHBDP degrades extracellular PHB to various-sized 3HB-oligomers, which an extracellular 3HBOH hydrolyzes to 3HB-monomers. (B) In Acidovorax sp. SA1, an extracellular PHBDP hydrolyzes extracellular PHB to small 3HB-oligomers (dimer and trimer), which an intracellular 3HBOH efficiently degrades to 3HB in the cell. (C) In Ralstonia eutropha H16, an intracellular 3HBOH helps in the degradation of intracellular PHB inclusions by PHBDP. << Less