Reaction participants Show >> << Hide
- Name help_outline 2-oxoglutarate Identifier CHEBI:16810 (Beilstein: 3664503; CAS: 64-15-3) help_outline Charge -2 Formula C5H4O5 InChIKeyhelp_outline KPGXRSRHYNQIFN-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CCC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 425 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline gibberellin A20 Identifier CHEBI:58526 Charge -1 Formula C19H23O5 InChIKeyhelp_outline OXFPYCSNYOFUCH-KQBHUUJHSA-M SMILEShelp_outline [H][C@@]12CC[C@]3(O)C[C@]1(CC3=C)[C@@H](C([O-])=O)[C@]1([H])[C@@]3(C)CCC[C@@]21OC3=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (Beilstein: 1900390; CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 997 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline gibberellin A1 Identifier CHEBI:58524 Charge -1 Formula C19H23O6 InChIKeyhelp_outline JLJLRLWOEMWYQK-OBDJNFEBSA-M SMILEShelp_outline [H][C@@]12CC[C@]3(O)C[C@]1(CC3=C)[C@@H](C([O-])=O)[C@]1([H])[C@@]3(C)[C@@H](O)CC[C@@]21OC3=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline succinate Identifier CHEBI:30031 (Beilstein: 1863859; CAS: 56-14-4) help_outline Charge -2 Formula C4H4O4 InChIKeyhelp_outline KDYFGRWQOYBRFD-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 331 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:10104 | RHEA:10105 | RHEA:10106 | RHEA:10107 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Mendel's stem length gene (Le) encodes a gibberellin 3 beta-hydroxylase.
Lester D.R., Ross J.J., Davies P.J., Reid J.B.
We describe the isolation of the Le gene of pea, which controls internode elongation and originally was described by Mendel. Heterologous screening of a pea cDNA library yielded a partial clone that was 61% identical to coding regions of the putative Arabidopsis gibberellin 3 beta-hydroxylase gene ... >> More
We describe the isolation of the Le gene of pea, which controls internode elongation and originally was described by Mendel. Heterologous screening of a pea cDNA library yielded a partial clone that was 61% identical to coding regions of the putative Arabidopsis gibberellin 3 beta-hydroxylase gene, GA4. DNA gel blot analysis with this cDNA revealed a HindIII restriction fragment length polymorphism between pea isolines differing at Mendel's Le locus. Genomic clones of the GA4-related gene were isolated from the Le and le isolines. Polymerase chain reaction combined with restriction fragment length polymorphism analysis were used to show that the gene mapped to the Le locus. A cDNA containing a complete open reading frame of the pea GA4-related gene was amplified by polymerase chain reaction from each isoline. Recombinant expression in Escherichia coli demonstrated that the product of the Le cDNA was a gibberellin 3 beta-hydroxylase that is able to convert GA20 to the bioactive GA1. Substantially reduced levels of gibberellin 3 beta-hydroxylase activity were measured, after expression of the le cDNA, by using identical methods. This reduced activity was associated with an alanine-to-threonine substitution in the predicted amino acid sequence of the enzyme near its proposed active site. << Less
-
Function and substrate specificity of the gibberellin 3beta-hydroxylase encoded by the Arabidopsis GA4 gene.
Williams J., Phillips A.L., Gaskin P., Hedden P.
cDNA corresponding to the GA4 gene of Arabidopsis thaliana L. (Heynh. ) was expressed in Escherichia coli, from which cell lysates converted [14C]gibberellin (GA)9 and [14C]GA20 to radiolabeled GA4 and GA1, respectively, thereby confirming that GA4 encodes a GA 3beta-hydroxylase. GA9 was the prefe ... >> More
cDNA corresponding to the GA4 gene of Arabidopsis thaliana L. (Heynh. ) was expressed in Escherichia coli, from which cell lysates converted [14C]gibberellin (GA)9 and [14C]GA20 to radiolabeled GA4 and GA1, respectively, thereby confirming that GA4 encodes a GA 3beta-hydroxylase. GA9 was the preferred substrate, with a Michaelis value of 1 microm compared with 15 microm for GA20. Hydroxylation of these GAs was regiospecific, with no indication of 2beta-hydroxylation or 2,3-desaturation. The capacity of the recombinant enzyme to hydroxylate a range of other GA substrates was investigated. In general, the preferred substrates contained a polar bridge between C-4 and C-10, and 13-deoxy GAs were preferred to their 13-hydroxylated analogs. Therefore, no activity was detected using GA12-aldehyde, GA12, GA19, GA25, GA53, or GA44 as the open lactone (20-hydroxy-GA53), whereas GA15, GA24, and GA44 were hydroxylated to GA37, GA36, and GA38, respectively. The open lactone of GA15 (20-hydroxy-GA12) was hydroxylated but less efficiently than GA15. In contrast to the free acid, GA25 19,20-anhydride was 3beta-hydroxylated to give GA13. 2,3-Didehydro-GA9 and GA5 were converted by recombinant GA4 to the corresponding epoxides 2, 3-oxido-GA9 and GA6. << Less
Plant Physiol. 117:559-563(1998) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Mendel's dwarfing gene: cDNAs from the Le alleles and function of the expressed proteins.
Martin D.N., Proebsting W.M., Hedden P.
The major gibberellin (GA) controlling stem elongation in pea (Pisum sativum L.) is GA1, which is formed from GA20 by 3beta-hydroxylation. This step, which limits GA1 biosynthesis in pea, is controlled by the Le locus, one of the original Mendelian loci. Mutations in this locus result in dwarfism. ... >> More
The major gibberellin (GA) controlling stem elongation in pea (Pisum sativum L.) is GA1, which is formed from GA20 by 3beta-hydroxylation. This step, which limits GA1 biosynthesis in pea, is controlled by the Le locus, one of the original Mendelian loci. Mutations in this locus result in dwarfism. We have isolated cDNAs encoding a GA 3beta-hydroxylase from lines of pea carrying the Le, le, le-3, and led alleles. The cDNA sequences from le and le-3 each contain a base substitution resulting in single amino acid changes relative to the sequence from Le. The cDNA sequence from led, a mutant derived from an le line, contains both the le "mutation" and a single-base deletion, which causes a shift in reading frame and presumably a null mutation. cDNAs from each line were expressed in Escherichia coli. The expression product for the clone from Le converted GA9 to GA4, and GA20 to GA1, with Km values of 1.5 microM and 13 microM, respectively. The amino acid substitution in the clone from le increased Km for GA9 100-fold and reduced conversion of GA20 to almost nil. Expression products from le and le-3 possessed similar levels of 3beta-hydroxylase activity, and the expression product from led was inactive. Our results suggest that the 3beta-hydroxylase cDNA is encoded by Le. Le transcript is expressed in roots, shoots, and cotyledons of germinating pea seedlings, in internodes and leaves of established seedlings, and in developing seeds. << Less
Proc. Natl. Acad. Sci. U.S.A. 94:8907-8911(1997) [PubMed] [EuropePMC]