Reaction participants Show >> << Hide
- Name help_outline a sterol ester Identifier CHEBI:35915 Charge 0 Formula C20H30O2R2 SMILEShelp_outline C12C(C3C(C(CC3)*)(C)CC1)CCC4C2(CCC(C4)OC(*)=O)C 2D coordinates Mol file for the small molecule Search links Involved in 51 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a sterol Identifier CHEBI:15889 Charge 0 Formula C19H31OR SMILEShelp_outline C12C(C3C(C(CC3)*)(C)CC1)CCC4C2(CCC(C4)O)C 2D coordinates Mol file for the small molecule Search links Involved in 266 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a fatty acid Identifier CHEBI:28868 Charge -1 Formula CO2R SMILEShelp_outline [O-]C([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,538 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:10100 | RHEA:10101 | RHEA:10102 | RHEA:10103 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
Purification and properties of pancreatic juice cholesterol esterase.
Hyun J., Kothari H., Herm E., Mortenson J., Treadwell C.R., Vahouny G.V.
-
Enzymatic synthesis and hydrolysis of cholesterol esters.
Vahouny G.V., Treadwell C.R.
-
Studies on sterol-ester hydrolase from Fusarium oxysporum. I. Partial purification and properties.
Okawa Y., Yamaguchi T.
1. A search for a long chain fatty acyl sterol-ester hydrolase in microorganisms led to the isolation from soil of five strains belonging to Fusarium sp. which produced strong activity in the culture medium. 2. The cholesterol esterase from Fusarium oxysporum IGH-2 was purified about 270-fold by m ... >> More
1. A search for a long chain fatty acyl sterol-ester hydrolase in microorganisms led to the isolation from soil of five strains belonging to Fusarium sp. which produced strong activity in the culture medium. 2. The cholesterol esterase from Fusarium oxysporum IGH-2 was purified about 270-fold by means of CaCl2 precipitation and Sephadex G-75 column chromatography. 3. The cholesterol esterase was activated by adekatol and Triton X-100. It was inhibited by lecithin and lysolecithin, and completely inactivated by heat treatment (60 degrees C for 30 min, at pH 7.0). 4. The optimum pH of the enzyme was found to be around 7.0. 5. Among various cholesterol esters tested, cholesterol linoleate was the most suitable substrate. 6. Cholesterol esters in serum were also hydrolyzed by this enzyme. << Less
-
Lipoamidase activity in normal and mutagenized pancreatic cholesterol esterase (bile salt-stimulated lipase).
Hui D.Y., Hayakawa K., Oizumi J.
Purified human milk lipoamidase was digested with endoproteinase Lys-C and the digested peptides were subjected to gasphase microsequence analysis. The sequencing of three isolated peptides of human milk lipoamidase revealed the identity of this protein with human milk bile salt-stimulated lipase ... >> More
Purified human milk lipoamidase was digested with endoproteinase Lys-C and the digested peptides were subjected to gasphase microsequence analysis. The sequencing of three isolated peptides of human milk lipoamidase revealed the identity of this protein with human milk bile salt-stimulated lipase (pancreatic cholesterol esterase). The identity of the cholesterol esterase with lipoamidase was confirmed by expressing a recombinant form of rat pancreatic cholesterol esterase and testing for lipoamidase activity of the recombinant protein. The results showed that the recombinant cholesterol esterase displayed both lipolytic and lipoamidase activities and was capable of hydrolysing triacetin and lipoyl-4-aminobenzoate (LPAB). The mechanisms of the esterase and amidase activities of the enzyme were further tested by determining enzyme activity in a mutagenized cholesterol esterase with a His435-->Gln435 substitution. This mutation has been shown previously to abolish enzyme activity against esterase substrates [DiPersio, Fontaine and Hui (1991) J. Biol. Chem. 266, 4033-4036]. We showed that the mutagenized protein was effective in hydrolysing the amidase substrate LPAB and displayed similar enzyme kinetics to those of the native enzyme. These data indicate that the mechanism for the cholesterol esterase hydrolysis of lipoamides is different from that of the hydrolysis of substrates with an ester linkage. The presence of an enzyme in the gastrointestinal tract capable of both ester and amide hydrolysis suggests an important role for this protein in the digestion and absorption processes. << Less