Reaction participants Show >> << Hide
- Name help_outline 3,4-dihydroxybenzoate Identifier CHEBI:36241 Charge -1 Formula C7H5O4 InChIKeyhelp_outline YQUVCSBJEUQKSH-UHFFFAOYSA-M SMILEShelp_outline C(=O)(C1=CC(=C(C=C1)O)O)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 26 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 3-carboxy-cis,cis-muconate Identifier CHEBI:57496 (Beilstein: 3958330) help_outline Charge -3 Formula C7H3O6 InChIKeyhelp_outline KJOVGYUGXHIVAY-BXTBVDPRSA-K SMILEShelp_outline [O-]C(=O)\C=C/C(=C\C([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:10084 | RHEA:10085 | RHEA:10086 | RHEA:10087 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Crystal structures of substrate and substrate analog complexes of protocatechuate 3,4-dioxygenase: endogenous Fe3+ ligand displacement in response to substrate binding.
Orville A.M., Lipscomb J.D., Ohlendorf D.H.
Protocatechuate 3,4-dioxygenase (3,4-PCD) utilizes a ferric ion to catalyze the aromatic ring cleavage of 3,4-dihydroxybenzoate (PCA) by incorporation of both atoms of dioxygen to yield beta-carboxy-cis, cis-muconate. The crystal structures of the anaerobic 3,4-PCD.PCA complex, aerobic complexes w ... >> More
Protocatechuate 3,4-dioxygenase (3,4-PCD) utilizes a ferric ion to catalyze the aromatic ring cleavage of 3,4-dihydroxybenzoate (PCA) by incorporation of both atoms of dioxygen to yield beta-carboxy-cis, cis-muconate. The crystal structures of the anaerobic 3,4-PCD.PCA complex, aerobic complexes with two heterocyclic PCA analogs, 2-hydroxyisonicotinic acid N-oxide (INO) and 6-hydroxynicotinic acid N-oxide (NNO), and ternary complexes of 3,4-PCD.INO.CN and 3,4-PCD. NNO.CN have been determined at 2.1-2.2 A resolution and refined to R-factors between 0.165 and 0.184. PCA, INO, and NNO form very similar, asymmetrically chelated complexes with the active site Fe3+ that result in dissociation of the endogenous axial tyrosinate Fe3+ ligand, Tyr447 (147beta). After its release from the iron, Tyr447 is stabilized by hydrogen bonding to Tyr16 (16alpha) and Asp413 (113beta) and forms the top of a small cavity adjacent to the C3-C4 bond of PCA. The equatorial Fe3+ coordination site within this cavity is unoccupied in the anaerobic 3,4-PCD.PCA complex but coordinates a solvent molecule in the 3,4-PCD.INO and 3,4-PCD.NNO complexes and CN-in the 3,4-PCD.INO.CN and 3,4-PCD.NNO.CN complexes. This shows that an O2 analog can occupy the cavity and suggests that electrophilic O2 attack on PCA is initiated from this site. Both the dissociation of the endogenous Tyr447 and the expansion of the iron coordination sphere are novel features of the 3,4-PCD. substrate complex which appear to play essential roles in the activation of substrate for O2 attack. Together, the structures presented here and in the preceding paper [Orville, A. M., Elango, N. , Lipscomb, J. D., & Ohlendorf, D. H. (1997) Biochemistry 36, 10039-10051] provide atomic models for several steps in the reaction cycle of 3,4-PCD and related Fe3+-containing dioxygenases. << Less
-
Protocatechuate 3,4-dioxygenase. Inhibitor studies and mechanistic implications.
Que L. Jr., Lipscomb J.D., Munck E., Wood J.M.
Protocatechuate 3,4-dioxygenase (EC 1.13.11.3) from Pseudomonas aeruginosa catalyzes the cleavage of 3,4-dihydroxybenzoate (protocatechuate) into beta-carboxy-cis,cis-muconate. The inhibition constants, Ki, of a series of substrate analogues were measured in order to assess the relative importance ... >> More
Protocatechuate 3,4-dioxygenase (EC 1.13.11.3) from Pseudomonas aeruginosa catalyzes the cleavage of 3,4-dihydroxybenzoate (protocatechuate) into beta-carboxy-cis,cis-muconate. The inhibition constants, Ki, of a series of substrate analogues were measured in order to assess the relative importance of the various functional groups on the substrate. Though important for binding, the carboxylate group is not essential for activity. Compounds with para hydroxy groups are better inhibitors than their meta isomers. Our studies of the enzyme-inhibitor complexes indicate that the 4-OH group of the substrate binds to the active-site iron. Taken together, Mössbauer, EPR, and kinetic data suggest a mechanism where substrate reaction with oxygen is preceded by metal activation of substrate. << Less
-
Mechanism for catechol ring cleavage by non-heme iron intradiol dioxygenases: a hybrid DFT study.
Borowski T., Siegbahn P.E.
The mechanism of the catalytic reaction of protocatechuate 3,4-dioxygenase (3,4-PCD), a representative intradiol dioxygenase, was studied with the hybrid density functional method B3LYP. First, a smaller model involving only the iron first-shell ligands (His460, His462, and Tyr408) and the substra ... >> More
The mechanism of the catalytic reaction of protocatechuate 3,4-dioxygenase (3,4-PCD), a representative intradiol dioxygenase, was studied with the hybrid density functional method B3LYP. First, a smaller model involving only the iron first-shell ligands (His460, His462, and Tyr408) and the substrates (catechol and dioxygen) was used to probe various a priori plausible reaction mechanisms. Then, an extended model involving also the most important second-shell groups (Arg457, Gln477, and Tyr479) was used for the refinement of the preselected mechanisms. The computational results suggest that the chemical reactions constituting the catalytic cycle of intradiol dioxygenases involve: (1) binding of the substrate as a dianion, in agreement with experimental suggestions, (2) binding of dioxygen to the metal aided by an electron transfer from the substrate to O(2), (3) formation of a bridging peroxo intermediate and its conformational change, which opens the coordination site trans to His462, (4) binding of a neutral XOH ligand (H(2)O or Tyr447) at the open site, (5) proton transfer from XOH to the neighboring peroxo ligand yielding the hydroperoxo intermediate, (6) a Criegee rearrangement leading to the anhydride intermediate, and (7) hydrolysis of the anhydride to the final acyclic product. One of the most important results obtained is that the Criegee mechanism requires an in-plane orientation of the four atoms (two oxygen and two carbon atoms) mainly involved in the reaction. This orientation yields a good overlap between the two sigma orbitals involved, C-C sigma and O-O sigma, allowing an efficient electron flow between them. Another interesting result is that under some conditions, a homolytic O-O bond cleavage might compete with the Criegee rearrangement. The role of the second-shell residues and the substituent effects are also discussed. << Less